
Release Notes

Version 13.0

The tool of thought for expert programming

Dyalog is a trademark of Dyalog Limited

Copyright 1982-2011 by Dyalog Limited.

All rights reserved.

Version 13.0

First Edition April 2011

No part of this publication may be reproduced in any form by any means without the

prior written permission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents

hereof and specifically disclaims any implied warranties of merchantability or
fitness for any particular purpose. Dyalog Limited reserves the right to revise this

publication without notification.

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.
UNIX is a registered trademark of The Open Group.

Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.

All other trademarks and copyrights are acknowledged.

 iii

Contents

C H A P T E R 1 Introduction .. 1

Summary... 1

System Requirements ... 2

Microsoft Windows .. 2

Microsoft .Net Interface .. 2

Unix and Linux ... 2

Installation Changes ... 2

Version Numbering ... 2

Files and Directories ... 2

Interoperability and Compatibility.. 4

Introduction ... 4

Code .. 4

“Ordinary” Arrays ... 4

32 vs. 64-bit Component Files .. 5

External Variables ... 5

32 vs. 64-bit Interpreters ... 5

Unicode vs. Classic Editions ... 5

⎕AVU .. 6

DECFs and Complex numbers .. 6

Very large array components .. 7

File Journaling .. 7

TCPSockets ... 7

Auxiliary Processors ... 7

Session Files ... 7

Improvements to Take, Drop and Index ... 8

New Functions .. 9

Left and Same ... 9

Identity and Right ... 9

Floating-Point Representation ... 9

Profiling .. 9

Space Indicator.. 9

Regular Expression Operators... 9

Variant Operator ... 10

Update DataTable (2010⌶) .. 10

Read DataTable (2020⌶) ... 10

Fork New User: Unix only (4000⌶) .. 10

Change User: Unix only (4001⌶) .. 10

Reap Forked Tasks: Unix only (4002⌶) .. 10

Signal Counts: Unix only (4007⌶) .. 10

Changes to Formatting. ... 11

New Idioms .. 13

Retained translate table for Grade .. 14

Correction to Dyadic Grade .. 14

 Contents

iv

Correction to Index Generator.. 14

Dyalog Unicode IME ... 15

Configuring the Dyalog Unicode IME ... 17

OLE interface changes ... 21

New Parameters ... 22

Internal Error (99) .. 23

Deprecation of support for 32-bit component files .. 24

C H A P T E R 2 128 Bit Decimal Floating-Point Support 25

Introduction .. 25

Floating-Point Representation .. 25

Conversion between Decimal and Binary .. 27

Decimal Comparison Tolerance ... 27

Passing floating-point values .. 28

Decimal Floats and Microsoft.NET .. 28

C H A P T E R 3 Complex Numbers .. 31

Overview .. 31

Notation .. 31

Arithmetic ... 31

Circular functions ... 32

Different Result for Power ... 33

Comparison .. 34

C H A P T E R 4 Search and Replace System Operators 35

Overview .. 35

Syntax .. 36

Input Document .. 37

Output .. 38

⎕R ... 38

⎕S ... 39

Search pattern ... 39

Transformation pattern ... 39

Transformation codes ... 41

Transformation Function .. 42

Options ... 43

IC .. 43

Mode ... 44

DotAll ... 44

EOL .. 45

NEOL ... 45

ML .. 46

Greedy .. 46

OM ... 47

InEnc .. 47

 Contents v

OutEnc .. 48

Enc .. 48

ResultText ... 48

Line, document and mixed modes .. 49

Technical Considerations.. 49

Further Examples .. 50

C H A P T E R 5 Reference to Language Enhancements .. 55

Add: ... R←X+Y ... 58

And, Lowest Common Multiple: R←X^Y ... 59

Binomial: ... R←X!Y ... 60

Ceiling: .. R←⌈Y ... 60

Circular: ... R←X○Y ... 61

Conjugate: .. R←+Y ... 62

Decode: .. R←X⊥Y ... 63

Direction (Signum): R←×Y ... 65

Divide: ... R←X÷Y ... 65

Drop: ... R←X↓Y ... 66

Equal: .. R←X=Y ... 67

Exponential: ... R←*Y ... 69

Factorial: .. R←!Y ... 69

Floor: ... R←⌊Y ... 70

Format (Dyadic): R←X⍕Y ... 71

Identity: .. R← ⊢Y .. 73

Index: ... R←{X}⌷Y .. 73

Left: ... R←X⊣Y ... 76

Logarithm: .. R←X⍟Y ... 77

Magnitude: ... R←|Y ... 77

Matrix Divide: R←X⌹Y ... 78

Matrix Inverse: R←⌹Y ... 80

Multiply: .. R←X×Y ... 81

Natural Logarithm: R←⍟Y ... 81

Negative: .. R←-Y ... 81

Pi Times: .. R←○Y ... 82

Power: .. R←X*Y ... 83

Reciprocal: ... R←÷Y ... 84

Residue: ... R←X|Y ... 84

Right: ... R←X⊢Y ... 85

Same: ... R←⊣Y ... 85

Subtract: ... R←X-Y ... 86

Take: .. R←X↑Y ... 87

Variant: .. {R}←{X}(f ⍠ B)Y 88

I-Beam: .. R←{X}(A⌶)Y 91

Update DataTable: {X}2010⌶Y ... 92

Read DataTable: R←{X}2020⌶Y 94

Fork New Task: (UNIX only) R←4000⌶Y .. 97

Change User: (UNIX only) R←4001⌶Y .. 98

 Contents

vi

Reap Forked Tasks: (UNIX only) R←4002⌶Y ... 98

Signal Counts: (UNIX only) R←4007⌶Y ... 101

Decimal Comparison Tolerance: ⎕DCT ... 101

Data Representation (Monadic): R←⎕DR Y .. 102

File Create: .. {R}←X ⎕FCREATE Y 103

Floating-Point Representation: ⎕FR ... 105

Name Association: {R}←{X}⎕NA Y 107

Variant: ... {R}←{X}(f ⎕OPT B)Y.................. 133

Profile Application: R←⎕PROFILE Y 133

Space Indicator: R←⎕RSI .. 139

Appendices: PCRE Specifications .. 141

Appendix A – Search Pattern syntax .. 141

Appendix B – Search Pattern syntax summary .. 178

Appendix C – License .. 184

Index .. 187

 1

C H A P T E R 1

Introduction

Summary
Dyalog APL Version 13.0 provides the following new features and enhancements:

 Support for 128-bit Decimal Floating-Point Number. See Chapter 2.

 Support for Complex Numbers. See Chapter 3.

 New regular expression operators - ⎕R, ⎕S. See Chapter 4.

 Short left arguments for Take (↑), Drop (↓) and Index (⌷).

 New primitive functions Left, Same, Identity and Right (tacks).

 New system function ⎕PROFILE for profiling and performance tuning your
applications.

 New system function ⎕RSI.

 Implementation changes to Format ⍕and ⎕FMT

 Matrix append idiom and retained translate table for dyadic⍋ and ⍒.

 Correction to dyadic ⍋.

 Change to the result of ⍳⍬.

 New I-beam functions 2010⌶ and 2020⌶ to improve the performance when
using the ADO.Net DataTable object.

 New I-beam functions 4000⌶, 4001⌶, 4002⌶, and 4007⌶ to perform
certain system level operations under UNIX.

 New Input Method Editor (IME) for Unicode Edition.

 OLE Interface changes for default indexers.

 New parameters to control the defaults for component file checksum and
journaling, and the accidental input of complex constants.

 Advance notice of the withdrawal of support for 32-bit Component Files.

 Dyalog APL/W Version 13.0 Release Notes 2

System Requirements

Microsoft Windows
Dyalog APL Version 13.0 supports all current versions of Windows from Windows
2000 up to and including Windows 7 and Windows Server 2008.

Dyalog APL Version 13.0 is not supported for versions of Windows prior to Windows
2000, such as Windows 95, Windows 98, Windows ME and Windows NT4.

Microsoft .Net Interface
Dyalog APL Version 13.0 .Net Interface requires Version 2.x or greater of the
Microsoft .Net Framework. It does not operate with .Net Version 1.0.

Unix and Linux
For an up-to-date list of supported Unix and Linux platforms, please contact
support@dyalog.com.

Installation Changes

Version Numbering
From Version 13.0 onwards the Version numbers in Dyalog APL have been changed.

The new numbering is in the form 13.0.7626. This allows Windows installers to
correctly identify the version numbers. The third number uniquely identifies a
particular state of the source code, whereas the BuildID uniquely identifies a specific
interpreter executable. The complete version number will always be incremented
whenever a new build is made.

Files and Directories
The location of some of the files installed by Dyalog has changed. The following notes
refer to a default installation of the 32-bit Unicode edition on a 64 bit version of
Windows; the details for Classic and for 64-bit editions will differ slightly. See User
Guide for further details.

For a default installation of the 32-bit Unicode edition of Dyalog APL on a 64 bit
version of Windows $DYALOG defaults to:

C:\Program Files (x86)\Dyalog\Dyalog APL 13.0 Unicode.

 Chapter 1: Introduction 3

Dyalog APL uses the LoadLibrary() function to load DLLs. The first directory
searched is the directory containing the image file used to create the calling process.

 The files that were previously installed in the GAC (Global Assembly Cache,
\Windows\assembly) are no longer installed in this way but are located only
within the $DYALOG directory tree.

 Files that were previously installed in Program Files\Dyalog\Dyalog 13.0\bin
are now only installed in $DYALOG.

 All files that were previously installed in $DYALOG\bin are now only
installed in $DYALOG.

This new policy simplifies the installation of Dyalog APL, and removes a number of
issues associated with updating files in the Global Assembly Cache (GAC).

Note that the $DYALOG\Samples\asp.net directory and its subdirectories is now self-
contained except for the Dyalog script compiler and the Dyalog interpreter DLL. This
means that this directory can be moved elsewhere, and as long as the
DyalogCompilerFullPath key in web.config points to the Dyalog script compiler
(dyalogc.exe or dyalogc_unicode.exe), and the dyalog130rt.dll or
dyalog130rt_unicode.dll is in the same directory as the Dyalog script compiler, the
samples will work.

If later patches to the .Net DLLs are installed on the computer, the web.config file will
need to be updated to refer to the correct version numbers.

 Dyalog APL/W Version 13.0 Release Notes 4

Interoperability and Compatibility

Introduction
Workspaces and component files are stored on disk in a binary format (illegible to text
editors). This format differs between machine architectures and among versions of
Dyalog. For example a file component written by a PC may well have an internal
format that is different from one written by a UNIX machine. Similarly, a workspace
saved from Dyalog Version 13.0 will differ internally from one saved by a previous
version of Dyalog APL.

It is convenient for versions of Dyalog APL running on different platforms to be able
to interoperate by sharing workspaces and component files. From Version 11.0,
component files and workspaces can generally be shared between Dyalog interpreters
running on different platforms. However, this is not always possible. For example,
component files created by Version 10.1 can often not be shared across platforms, even
when used by later versions (the system function ⎕FCOPY can be used to make a
logically identical copy of an old file, which is fully inter-operable).

The following sections describe other limitations in inter-operability:

Code
Code which is saved in workspaces, or embedded within ⎕ORs stored in component
files, can generally only be read by the version which saved them and later versions of
the interpreter. In the case of workspaces, a load (or copy) from an older version would
fail with the message:

 this WS requires a later version of the interpreter.

In the case of ⎕OR, unpredictable behaviour may result if an older version reads a ⎕OR
saved by a later version of the system. In addition each time that a ⎕

 Dyalog recommends that ⎕OR should not be
used as a mechanism for sharing code or objects between different versions of APL

“Ordinary” Arrays
With the exception of the Unicode restrictions described in the following paragraphs,
Dyalog APL provides inter-operability for arrays which only contain (nested) character
and numeric data. Such arrays can be stored in component files - or transmitted using
TCPSocket objects and Conga connections, and shared between all versions and
across all platforms.

 Chapter 1: Introduction 5

As mentioned in the introduction, full cross-platform interoperability of component
files is only available for large component files (see the following section), and for
small component files created by Version 11.0 or later.

32 vs. 64-bit Component Files
Large (64-bit-addressing) component files are inaccessible to versions of the
interpreter that pre-dated their introduction (versions earlier than 10.1).

The second item in the right argument of ⎕FCREATE determines the addressing type
of the file.

 'small'⎕fcreate 1 32 ⍝ create small file.
 'large'⎕fcreate 1 64 ⍝ create large file.

If the second item is missing, the file type defaults to 64-bit-addressing. In versions
prior to 12.0, the default was 32-bit-addressing. It is possible to override these defaults
on the command line.

Note that small (32-bit-addressing) cannot contain Unicode data. Unicode editions of
Dyalog APL can only write character data which would be readable by a Classic
edition (consisting of elements of ⎕AV).

External Variables
External variables are implemented as small (32-bit-addressing) component files, and
subject to the same restrictions as these files. External variables are unlikely to be
developed further; Dyalog recommends that applications which use them should switch
to using mapped files or traditional component files. Please contact Dyalog if you need
further advice on this topic.

32 vs. 64-bit Interpreters
From Dyalog APL Version 11.0 onwards, there are two separate versions of programs
for 32-bit and 64-bit machine architectures (the 32-bit versions will also run on 64-bit
machines running 64-bit operating systems). There is complete inter-operability
between 32- and 64-bit interpreters, except that 32-bit interpreters are unable to work
with arrays greater than 2GB in size.

Unicode vs. Classic Editions
From Version 12.0 onwards, a Unicode edition is available, which is able to work with
the entire Unicode character set. Classic editions (a term which includes versions prior
to 12.0) are limited to the 256 characters defined in the atomic vector, ⎕AV).

Large (64-bit-addressing) component files have a Unicode property; when this is
enabled (it is the default), all characters will be written as Unicode data to the file. The
Unicode property is always off for small (32-bit addressing) files, which may not
contain Unicode data. The Unicode property can be toggled on and off using
⎕FPROPS

 Dyalog APL/W Version 13.0 Release Notes 6

When a Unicode edition writes to a component file which may not contain Unicode
data, character data is mapped to ⎕AV, and can therefore be read without problems by
Classic editions.

A TRANSLATION ERROR will occur if a Unicode edition writes to a non-Unicode
component (that is either a 32-bit file, or a 64-bit file when the property is
currently off if the data being written contains characters which are not in ⎕AV (see
⎕AVU for more details).

Likewise, a Classic edition (Version 12.0 or later) will issue a TRANSLATION
ERROR if it attempts to read a component containing Unicode data from a component
file. Version 11.0 cannot read components containing Unicode data and issues a
NONCE ERROR.

A TRANSLATION ERROR will also issued when a Classic edition)LOADs or
)COPYs a workspace containing Unicode data which cannot be mapped to ⎕AV.

TCPSocket objects have an APL property which corresponds to the Unicode property
of a file, if this is set to Classic (the default) the data in the socket will be restricted
to ⎕AV, if Unicode it will contain Unicode character data. As a result,
TRANSLATION ERRORs can occur on transmission or reception in the same way as

⎕AVU
The implementation of the function Right in Version 13.0 led to the discovery that
⎕AVU ⎕AV[59+⎕IO] ¤ (⎕UCS 164 ⊢ (

⎕UCS 8866 ⎕AVU
AVU

⎕AV[59+⎕IO]
¤ TRANSLATION ERROR

¤

DECFs and Complex numbers
Version 13.0 introduces two new data types; DECFs and Complex numbers. Attempts
to read components of these types in earlier interpreters will result in a DOMAIN
ERROR.

 Chapter 1: Introduction 7

Very large array components
The maximum size of a component written by Version 12.1 and prior is 2GB. This is
the size of the component as held on disk; the maximum size of an array in APL will
be slightly smaller. In Version 13.0 the maximum size of a component written by a 64
bit interpreter is 4GB. An attempt to read such a component in 32-bit interpreters will
result in a WS FULL. An attempt to read such a component in 64-bit Versions 12.0 and
12.1 patched after 1st April 2011 will result in a NONCE ERROR; earlier patches
generate a FILE COMPONENT DAMAGED error.

File Journaling
Version 12.0 introduces File Journaling (level 1), and 12.1 adds levels 2 and 3.
Versions earlier than 12.0 cannot tie files which have any form of journaling enabled.
Version 12.0 cannot tie files with journaling levels other than 1. Files can be shared
with earlier versions by using ⎕FPROPS to switch journaling off.

TCPSockets
TCPSockets used to communicate between differing versions of Dyalog APL are
subject to similar limitations to those described above for component files. In
particular TCPSockets with 'Style' 'APL' will only be able to pass arrays that are
supported by both versions.

Auxiliary Processors
A Dyalog APL process is restricted to starting an AP of exactly the same architecture.
In other words, the AP must share the same word-width and byte-ordering as its
interpreter process.

Session Files
Session (.dse) files may only be used on the platform on which they were created and
saved.

 Dyalog APL/W Version 13.0 Release Notes 8

Improvements to Take, Drop and Index
You may now elide trailing items of the left argument to the primitive functions Take
(↑), Drop (↓) and Index (⌷). Instead of causing a RANK ERROR or LENGTH ERROR,
the missing items default to appropriate values.

 A←3 4 5 6⍴⍳360 ⍝ rank-4 array.

Take: missing trailing items of the left argument default to the length of the
corresponding axis.

 2↑A ←→ 2 4 5 6↑A
 1 1↑A ←→ 1 1 5 6↑A
 ⍬↑A ←→ 3 4 5 6↑A ←→ A

Drop: missing trailing items of the left argument default to 0:

 2↓A ←→ 2 0 0 0↓A
 1 1↓A ←→ 1 1 0 0↓A
 ⍬↓A ←→ 0 0 0 0↓A ←→ A

Index: missing trailing items of the left argument default to the index vector of the
corresponding axis:

 2⌷A ←→ 2(⍳4)(⍳5)(⍳6)⌷A
 1 1⌷A ←→ 1 1 (⍳5)(⍳6)⌷A
 ⍬⌷A ←→ (⍳3)(⍳4)(⍳5)(⍳6)⌷A ←→ A

 Chapter 1: Introduction 9

New Functions

Left and Same
Monadic ⊣ (left tack) is called Same and returns its argument. Dyadic ⊣ is called Left
and returns its left argument.

Identity and Right
Monadic ⊢ (right tack) is called Identity and returns its argument. Dyadic ⊢ is called
Right and returns its right argument.

Note that monadic + is now called Conjugate and it is recommended that its use as
"Identity" be replaced by monadic ⊢.

Floating-Point Representation
The new system variable ⎕FR specifies whether floating-point arithmetic is performed
using 64-bit binary floating-point or 128-bit decimal floating-point. These options are
selected by setting ⎕FR to 645 or 1287 respectively. The default value of ⎕FR is
configurable. There is also a new system variable ⎕DCT which controls comparison
tolerance for decimal128 comparisons. See Chapter 2 for details.

Profiling
The new System Function ⎕PROFILE facilitates the profiling of either CPU
consumption or elapsed time for an application. It does so by collecting and retaining
time measurements for APL functions/operators and function/operator lines.
⎕PROFILE is used to both control the state of profiling and retrieve the collected
profiling data.

Space Indicator
The new System Function ⎕RSI is identical to ⎕NSI except that ⎕RSI returns refs to
the spaces whereas ⎕NSI returns their names. ie. ⎕NSI←→⍕¨⎕RSI.

Regular Expression Operators
The new regular expression search and replace feature is implemented by 2 new
system operators: ⎕R and ⎕S. See Chapter 4 for details.

 Dyalog APL/W Version 13.0 Release Notes 10

Variant Operator
⍠ or ⎕OPT (Variant) is a new system operator designed to facilitate the processing of
name/value pairs used to set options and parameters, such as those required by ⎕R and

⎕S.1

Update DataTable (2010⌶)
This function performs a block update of an instance of the ADO.NET object
System.Data.DataTable.

Read DataTable (2020⌶)
This function performs a block read from an instance of the ADO.NET object
System.Data.DataTable.

Fork New User: Unix only (4000⌶)
This function forks the current APL task. This means that it initiates a new separate
copy of the APL program, with exactly the same APL execution stack.

Change User: Unix only (4001⌶)
The function changes the userid (uid) and groupid (gid) of the process to values that
correspond to the specified user name.

Reap Forked Tasks: Unix only (4002⌶)
Under UNIX, when a child process terminates, it signals to its parent that it has
terminated and waits for the parent to acknowledge that signal. 4002⌶

Signal Counts: Unix only (4007⌶)
Obtains a count of the number of signals that have been generated since the last call to
this function, or since the start of the process.

1 The new symbol ⍠ is not present in the Classic Edition so the system function ⎕OPT is

provided as an alternative.

 Chapter 1: Introduction 11

Changes to Formatting.
Monadic ⍕, Dyadic ⍕ and ⎕FMT now use 128-bit decimal representation internally
when processing floating-point numbers. This has been done to improve the accuracy
with which floating-point numbers are converted to text for display and printing.

As a result of this change, the APLFormatBias parameter is no longer supported and if
defined will be ignored.

Monadic ⍕ formats complex numbers using J notation (always with a capital J).

Dyadic ⍕ and ⎕FMT generate DOMAIN ERROR if their right argument contains a
complex number.

When ⎕FR is set to 1287, 40⍕1 and 'E50.40'⎕FMT 1, where the right hand side is
an integer, will now print 34 "reliable" digits instead of 16 before filling in with
underscores.

 40⍕1 ⍝ Version 12.1
 1.000000000000000_________________________

 ⎕FR←1287 ⍝ Version 13.0
 40⍕1
 1.000000000000000000000000000000000_______

Alignment (E Format)

The following rules of alignment apply to ⎕FMT (E format), and dyadic ⍕ with a
negative left argument.

When ⎕FR is 1287, dyadic ⍕ (with negative precision) and dyadic ⎕FMT (E format)
will try to move everything left two spaces, to leave room for an extra two digits in the
exponent.

 Dyalog APL/W Version 13.0 Release Notes 12

When ⎕FR is 645, the result is aligned so that there is room for three characters after
the E:

 ⎕FR←645
]display 'E10.2'⎕FMT 1 1E10 1E100
┌→─────────┐
↓ 1.0E0 │
│ 1.0E10 │
│ 1.0E100│
└──────────┘

When ⎕FR is 1287, the result is aligned to leave room for five characters after the E:

 ⎕FR←1287
]display 'E10.2'⎕FMT 1 1E10 1E100
┌→─────────┐
↓ 1.0E0 │
│ 1.0E10 │
│ 1.0E100 │
└──────────┘

This is done so that there is room for the largest negative exponent that decimal
floating point supports:

]display 'E10.2'⎕FMT 1 1E10 1E100 1E¯6176
┌→─────────┐
↓ 1.0E0 │
│ 1.0E10 │
│ 1.0E100 │
│ 1.0E¯6176│
└──────────┘

However, if the field width isn't large enough to allow for the extra trailing spaces, they
are truncated (rather than printing a line of asterisks):

]display 'E7.2'⎕FMT 1 1E10 1E100 1E¯1000
┌→──────┐
↓1.0E0 │
│1.0E10 │
│1.0E100│
│0.0E0 │
└───────┘

 Chapter 1: Introduction 13

New Idioms
The following new idioms are implemented in Version 13.0.

Expression Description

A⍪←A Catenate along first axis

⍪/PV Join along first axis

⊣⌿A First sub-array along first axis

⊣/A First sub-array along last axis

⊢⌿A Last sub-array along first axis

⊢/A Last sub-array along last axis

*○N Euler's idiom

Notes

Existing idiom "Catenate To": V,←A has been generalised to allow arrays of higher
rank on the left, so that its new template expression should be A,←A. This means, for
example, that concatenating a new column to a matrix will be optimised.

New idiom A⍪←A is identical to A,←A except concatenation occurs along the first,
rather than the last, axis.

Join along first axis: ⍪/PV is analogous to existing idiom Join (,/PV) except that
conformable items of the argument vector are concatenated along their first, rather than
last, axis.

Sub-array selection idioms ⊢⌿A, ⊢/A, ⊣⌿A, and ⊣/A return the first (respectively. last)
rank (0⌈¯1+⍴⍴A) sub-array along the first (respectively last) axis of A. For example,
if V is a vector, then:

⊣/V First item of vector

⊢/V Last item of vector

Similarly, if M is a matrix, then:

⊣⌿M First row of matrix

⊣/M First column of matrix

⊢⌿M Last row of matrix

⊢/M Last column of matrix

The idiom generalises uniformly to higher-rank arrays.

 Dyalog APL/W Version 13.0 Release Notes 14

Euler's idiom *○N produces accurate results for right argument values that are a
multiple of 0J0.5. This is so that Euler's famous identity 0=1+*○0J1 holds, even
though the machine cannot represent multiples of pi, including ○0J1, accurately.

Retained translate table for Grade
The expressions: alphabet∘⍋ and alphabet∘⍒ now retain the translate table in a
similar way as the set functions (⍳ ∊ etc)

 f←a∘⍋
 f x ⍝ first run builds the translate table
 f y ⍝ subsequent runs are significantly faster than a⍋y

Note that the expression (a∘⍋)¨x y does the same as the above example, without
saving the derived function.

Correction to Dyadic Grade
The implementation of dyadic ⍋ has been fixed to follow the Extended APL Standard.

X⍋Y is now equivalent to X⍋((1↑⍴Y),×/1↓⍴Y)⍴Y. Previously, when the rank of Y
was greater than 2, X⍋Y would incorrectly grade the sub-vectors of Y along the last
axis, instead of the sub-arrays of Y along the first axis

Correction to Index Generator
The result of the expression ⍳⍬ has been changed from ⎕IO to (⊂⍬). The previous
behaviour was incorrect.

Version 12.1

 ⍳⍬
1
 ⎕IO←0
 ⍳⍬
0
 ⎕IO≡⍳⍬
1

Version 13.0

]display ⍳⍬
┌─────┐
│ ┌⊖┐ │
│ │0│ │
│ └~┘ │
└∊────┘
 (⊂⍬)≡⍳⍬
1

 Chapter 1: Introduction 15

Dyalog Unicode IME
The mechanism for entering APL characters using the keyboard has been completely
revised.

 A brand-new Input Method Editor, the Dyalog Unicode IME, replaces all
previous mechanisms in the Unicode Edition. The Dyalog Unicode IME can
be used with previous Unicode Editions of Dyalog APL provided that they are
patched to a Version created on or after 1st April 2011.

 The Ctrl and AltGr keyboards that were created using the Microsoft Keyboard
Layout Creator (MSKLC) and introduced with Version 12.0 are no longer
supplied nor formally supported for use with Version 13.0.

 The Comfort On-Screen keyboard is no longer included with nor supported by
Version 13.0.

The Dyalog Unicode IME uses the same Microsoft Input Method Editor technology as
the previous version of the IME, but differs in the following respects:

 It maps keystrokes to Unicode code points (as opposed to positions in the
Dyalog Atomic Vector)

 It specifies only the keystrokes for entering APL (and potentially other
special) symbols. It does not define or redefine characters entered using the
standard keyboard conventions.

This means that the Dyalog Unicode IME acts effectively as an overlay to whatever
keyboard is employed, and may be used to enter APL symbols in any application that
supports IME technology, i.e. most Windows applications.

Input Translate Tables

The Dyalog Unicode IME is driven by one of a set of Input Translate tables installed in
Program Files\Dyalog\UnicodeIME directory. For example, the US-English
Input table is named:

Program Files\Dyalog\UnicodeIME\en_US.din

The tables contain entries each of which maps a keystroke to the Unicode code point of
an APL symbol. For example, the following entries (from en_US.din) map:

 ⋄
 ¨

+UNI Desc Shift Key + Name
 8900=Ctrl+` : 2 192 + Diamond
 168=Ctrl+1 : 2 49 + Diaeresis (Each)
 175=Ctrl+2 : 2 50 + Overbar (High Minus)
 60=Ctrl+3 : 2 51 + Less Than

 Dyalog APL/W Version 13.0 Release Notes 16

The Dyalog Unicode IME supplied with Version 13.0 includes support for Danish,
Finnish, French, German, Italian, Swedish and British and American English
keyboards, based on the Version 12.1 Dyalog Ctrl layouts.

The Dyalog Unicode IME also has support for the Danish, British and American
English physical keyboards, which are available from Dyalog Ltd.

The default keyboard mapping for unsupported languages is American English.

To differentiate the new from the old, the Dyalog Unicode IME uses a different icon to
that used by the old IME as shown below:

The Dyalog Unicode IME

The old APL IME:

See the new IME User Guide for further details.

Special Commands

The special commands used by Dyalog APL for Windows Unicode Edition are mapped
to keystrokes under Options/Configure/Keyboard Shortcuts (see User Guide Chapter
2).

However, the Dyalog Unicode IME translate tables also include default mappings for
the special command keystrokes used by Dyalog APL. This mechanism is intended
primarily for use by terminal emulators used for running UNIX-based versions of
Dyalog APL,

These commands are defined in

Program Files\Dyalog\UnicodeIME\special_keys.din

For example the command ER (execute) is mapped to the Enter key, ED (edit) to
Shift+Enter, and so forth

+ER=Enter: 13 + Enter
 ED=Shift+Enter: 1 13 + Edit
 TC=Ctrl+Enter: 2 13 + Trace
 FD=Ctrl+Shift+Enter: 3 13 + Forward.

These command keystroke mappings are ignored by applications unless the application
is explicitly named by the WantsSpecialKeys parameter.

 Chapter 1: Introduction 17

Configuring the Dyalog Unicode IME
The following description uses screenshots taken from a Windows 7 PC with three
Input Languages configured for the current user: English (United Kingdom) – the
default Input Language, Danish (Denmark) and English (United States).

The Dyalog Unicode IME is added as an additional service to all keyboards defined to
the user and the administrator at the time that the IME was installed.

For each IME the underlying keyboard layout file will be the same as that defined for
the base keyboard. The layout file is a DLL created by Microsoft.

The language specified in the description of the IME is the name of the IME translate
table that has been associated with the IME for the specific keyboard. In the case of
languages not supported by the IME the keyboard will default to en-US. With the IME
as supplied with Version13.0 altering this text requires editing the appropriate Registry
value.

The IME may be configured from within APL or from Windows.

1. From within Dyalog APL, to change the properties of the IME go to
Options/Configure/Unicode Input tab and select Configure Layout:

 Dyalog APL/W Version 13.0 Release Notes 18

2. From Windows, right click on either the Input Language icon or the Keyboard layout
icon in the TaskBar and select Settings:

 Chapter 1: Introduction 19

To alter the configuration of any of the installed IMEs, select that IME and click on
Properties:

Input translate table:

The translate table defines the mapping between APL characters and the keystrokes
that generate those APL characters. It is possible to alter the mapping or to create
support for new keyboards by altering the translate table, or by selecting a different
translate table. See the IME User Guide for more details.

Overstrikes:

In the original implementations of APL, many of the special symbols could only be
generated by overstriking one character on top of another as is reflected in the
appearance of the glyphs. For example, the symbol for Grade Up (⍋) is actually the
symbol for delta (∆) superimposed on the symbol for vertical bar (|)

In Dyalog APL such symbols can be generated either by a single keystroke, or (in
Replace mode) by overtyping one symbol with another. For example ⍋

 Dyalog APL/W Version 13.0 Release Notes 20

Use Overstrike popup:

∆

⍋

 Chapter 1: Introduction 21

Overstrikes do not require the OS introducer key
(experimental):

With this option selected, the IME identifies characters which are part of a valid
overstrike, and when such a character is entered into the session, begins an overstrike
creation operation. This mode is experimental in the IME supplied with Version 13.0.

OLE interface changes
Default indexers which are implemented as methods rather than as properties, must
now be accessed using indexing and not using function calls. For example, to obtain
the individual members of the Shapes collection of the Excel Work Sheet object, it was
previously necessary to call its Item method as a function.

Version 12.1

 Excel.Application.ActiveSheet.Shapes.Item 1

Version 13.0

In Version 13.0, this is no longer supported, and you must use indexing instead.

 Excel.Application.ActiveSheet.Shapes[1]

 Dyalog APL/W Version 13.0 Release Notes 22

New Parameters

APL_FCREATE_PROPS_C

This parameter specifies the default chksum level for newly-created component files.

APL_FCREATE_PROPS_J

This parameter specifies the default journaling level for newly-created component
files.

APL_FAST_FCHK

This parameter specifies whether Dyalog APL should optimise ⎕FCHK by allowing it
to reliably determine whether a component file had been properly untied and therefore
does not need to be checked (this is overridable using the ⎕FCHK option 'force').

Optimising ⎕FCHK in this way has a performance impact on ⎕FUNTIE and it is
recommended this optimisation is switched off if your application frequently ties and
unties files.

Note: this only affects component files with journaling enabled.

The values of the parameter are:

0 Do not optimise ⎕FCHK (optimise ⎕FUNTIE instead)

1 Optimise ⎕FCHK

The default values of the parameter reflect the existing behaviour in Version 12.1: 0 on
Windows and 1 on Linux / AIX. On Windows, setting the value 1 has no effect.

APL_EXTERN_DECF

By default, arrays of type DECF (128-bit decimal) will be passed unchanged to
Auxiliary Processors, and to DLLs using A or Z argument types. However, if
APL_EXTERN_DECF is set to 0, DECF arrays will be converted to DOUBLE before
they are passed to AP’s and DLL’s. This will allow user-written Auxiliary Processors
and DLLs to continue to work at least temporarily while users determine how to
change their code to cater for the new data type. This parameter will not be supported
beyond Version 13.0.

 Chapter 1: Introduction 23

APL_COMPLEX_AS_V12

Support for Complex Numbers (Chapter 3) means that some functions produce
different results from previous Versions of Dyalog APL. If APL_COMPLEX_AS_V12
is set to 1 the behaviour of code developed using Version 12.1 or earlier will be
unchanged; in particular:

 Power (*) and logarithm (⍟) do not produce Complex Numbers as results
from non-complex arguments.

 ⎕VFI will not honour "J" or "j" as part of a number.

 ¯4○Y will be evaluated as (¯1+Y*2)*0.5, which is positive for negative
real arguments.

If APL_COMPLEX_AS_V12 is set to any other value or is not set at all then code
developed using version 12.1 or earlier may now generate Complex Numbers.

Note that this feature is provided to simplify the transition of older code to Version
13.0. It does not prevent the generation and use of Complex Numbers using features
new to 13.0 (such as explicitly specifying a Complex Number literal), and it will be
removed in a future release of Dyalog APL.

Internal Error (99)
INTERNAL ERROR indicates a severe system error from which Dyalog APL has
recovered; in the past such errors would always have resulted in a Syserror.

Should you encounter INTERNAL ERROR, Dyalog strongly recommends that you
save your work(space) , and report the issue. No existing Syserror reports have yet
been changed into INTERNAL ERROR.

 Dyalog APL/W Version 13.0 Release Notes 24

Deprecation of support for 32-bit component files
Since Version 10.1, Dyalog APL has supported large span (64-bit) component files,
and since Version 12.0 ⎕FCREATE has created these by default. Existing small span
(32-bit) component files are still supported and 32-bit component files may still be
created if suitable options are specified, but they have restrictions which 64-bit files do
not, including:

 The maximum file size is 4GB.

 The files are not fully architecture-independent meaning that there are
limitations sharing them between, for example, Windows or Linux and AIX
machines.

 Components may not contain Unicode data.

Dyalog intends to withdraw support for 32-bit component files in future releases.

If you have any existing 32-bit component files, or applications which create and/or
use them, Dyalog recommends that you prepare for this in the following ways:

 Ensure that Dyalog is not started with the command-line option –F32. This
option sets the default component file type which is created to 32-bit.

 Ensure that no ⎕FCREATE within your applications explicitly specifies that
32-bit files are to be created.

 Make plans to convert any existing 32-bit component files to 64-bit using
⎕FCOPY. ⎕FCOPY will create a 64-bit copy even if the file being copied is
32-bit.

Note: in order to allow the use of legacy files retrieved from backups etc., Dyalog will
continue to provide a means to convert 32-bit files to supported formats for a minimum
of 10 years after direct support is withdrawn.

 25

C H A P T E R 2

128 Bit Decimal Floating-Point Support

Introduction
The original IEE-754 64-bit binary floating point (FP) data type (also known as type
number 645), that is used internally by Dyalog APL to represent floating-point values,
does not have sufficient precision for certain financial computations – typically
involving large currency amounts. The binary representation also causes errors to
accumulate even when all values involved in a calculation are “exact” (rounded)

decimal numbers, since many decimal numbers cannot be accurately represented
regardless of the precision used to hold them. To reduce this problem, Version 13.0
introduces support for the 128-bit decimal data type described by IEEE-754-2008 as an
alternative representation for floating-point values.

Floating-Point Representation
Computations using 128-bit decimal numbers require twice as much space for storage,
and run more than an order of magnitude more slowly on platforms which do not
provide hardware support for the type. At this time, hardware support is only available
from IBM (Power chips starting with the “P6”, and recent “z” series mainframes).

Even with hardware support, a slowdown of a factor of 4 can be expected. For this
reason, Dyalog Version 13 allows users to decide whether they need the higher-
precision decimal representation, or prefer to stay with the faster and smaller binary
representation.

A new system variable ⎕FR (for Floating-point Representation) can be set to the value
645 (the installed default) to indicate 64-bit binary FP, or 1287 for 128-bit decimal FP.
The default value of ⎕FR is configurable.

Simply put, the value of ⎕FR decides the type of the result of any floating-point
calculation that APL performs. In other words, when entered into the session:

 ⎕FR = ⎕DR 1.234 ⍝ Type of a floating-point constant
 ⎕FR = ⎕DR 3÷4 ⍝ Type of any floating-point result

 Dyalog APL/W Version 13.0 Release Notes 26

⎕FR has workspace scope, and may be localised. If so, like most other system
variables, it inherits its initial value from the global environment.

However: Although ⎕FR can vary, the system is not designed to allow “seamless”

modification during the running of an application and the dynamic alteration of is not
recommended. Strange effects may occur. For example, the type of a constant
contained in a line of code (in a function or class), will depend on the value of ⎕FR
when the function is fixed. Similarly, a constant typed into a line in the Session is
evaluated using the value of ⎕FR that pertained before the line is executed. Thus, it
would be possible for the first line of code above to return 0, if it is in the body of a
function. If the function was edited and while suspended and execution is resumed, the
result would become 1. Also note:

 ⎕FR←1287
 x←1÷3

 ⎕FR←645
 x=1÷3
1

The decimal number has 17 more 3’s. Using the tolerance which applies to binary

floats (type 645), the numbers are equal. However, the “reverse” experiment yields 0,

as tolerance is much narrower in the 128-bit universe:

 ⎕FR←645
 x←1÷3

 ⎕FR←1287
 x=1÷3
0

Since ⎕FR can vary, it will be possible for a single workspace to contain floating-point
values of both types (existing variables are not converted when ⎕FR is changed). For
example, an array that has just been brought into the workspace from external storage
may have a different type from ⎕FR in the current namespace. Conversion (if
necessary) will only take place when a new floating-point array is generated as the
result of “a calculation”. The result of a computation returning a floating-point result
will not depend on the type of the arrays involved in the expression: ⎕FR at the time
when a computation is performed decides the result type, alone.

Structural functions generally do NOT change the type, for example:

 ⎕FR←1287
 x←1.1 2.2 3.3

 ⎕FR←645
 ⎕dr x
1287
 ⎕dr 2↑x
1287

 Chapter 2: 128-Bit Decimal Floating-Point Support 27

128-bit decimal numbers not only have greater precision (roughly 34 decimal digits);
they also have significantly larger range – from ¯1E6145 to 1E6145. Loss of precision
is accepted on conversion from 645 to 1287, but the magnitude of a number may make
the conversion impossible, in which case a DOMAIN ERROR is issued:

 ⎕FR←1287
 x←1E1000

 ⎕FR←645
 x+0
DOMAIN ERROR

WARNING: The use of COMPLEX numbers when ⎕FR is 1287 is not recommended,
because:

 any 128-bit decimal array into which a complex number is inserted or
appended will be forced in its entirety into complex representation, potentially
losing precision

 all comparisons are done using ⎕DCT when ⎕FR is 1287, and this is
equivalent to 0 for complex numbers.

Conversion between Decimal and Binary
Conversion of data from Binary to Decimal is logically equivalent to formatting, and
the reverse conversion is equivalent to evaluating input. These operations are
performed according to the same rules that are used when formatting (and evaluating)
numbers with ⎕PP set to 17 (guaranteeing that the decimal value can be converted
back to the same binary bit pattern). Because the precision of decimal floating-point
numbers is much higher, there will always be a large number of potential decimal
values which map to the same binary number: As with formatting, the rule is that the
SHORTEST decimal number which maps to a particular binary value will be used as
its decimal representation.

Data in component files will be stored without conversion, and only converted when a
computation happens. It should be stored in decimal form if it will repeatedly be used
by application code in which ⎕FR has the value 1287. Even in applications which use
decimal floating point everywhere, reading old component files containing arrays of
type 645, or receiving data via ⎕NA, the .Net interface or other external sources, will
allow binary floating-point values to enter the system and require conversion.

Decimal Comparison Tolerance
When ⎕FR has the value 1287, the new system variable ⎕DCT will be used to specify
comparison tolerance. The default value of ⎕DCT is 1E¯28, and the maximum value is
2.3283064365386962890625E¯10 (the value is chosen to avoid fuzzy
comparison of 32-bit integers).

 Dyalog APL/W Version 13.0 Release Notes 28

Passing floating-point values
⎕NA now supports a new data type “D” to represent the Densely Packed Decimal

(DPD) form of 128-bit decimal numbers, as specified by the IEEE-754 2008 standard.
Dyalog has decided to use DPD, which is the format used by IBM for hardware
support, on ALL platforms, although “Binary Integer Decimal” (BID) is the format that
Intel libraries use to implement software libraries to do decimal arithmetic.
Experiments have shown that the performance of 128-bit DPD and BID libraries are
very similar on Intel platforms. In order to avoid the added complication of having two
internal representations, Dyalog has elected to go with the hardware format, which is
expected to be adopted by future hardware implementations.

The support libraries for writing AP’s and DLL’s include new functions to extract the

contents of a value of type D as a string or double-precision binary “float” – and
convert data to D format.

Decimal Floats and Microsoft.NET
The Microsoft.NET framework contains a type named System.Decimal, which
implements decimal floating-point numbers. However, it uses a different internal
format from that defined by IEEE-754 2008.

Version 13.0 includes a Microsoft.NET class (called Dyalog.Dec128), which will
perform arithmetic on data represented using the “Binary Integer Decimal” format. All
computations performed by the Dyalog.Dec128 class will produce exactly the same
results as if the computation was performed in APL. A “DCT” property allows setting

the comparison tolerance to be used in comparisons, Ceiling/Floor, etc).

The Dyalog class is modelled closely after the existing System.Decimal type,
providing the same methods (Add, Ceiling, Compare, CompareTo, Divide, Equals,
Finalize, Floor, FromOACurrency, GetBits, GetHashCode, GetType, GetTypeCode,
MemberwiseClone, Multiply, Negate, Parse, Remainder, Round, Subtract, To*,
Truncate, TryParse) and operators (Addition, Decrement, Division, Equality, Explicit,
GreaterThan, GreaterThanOrEqual, Implicit, Increment, Inequality, LessThan,
LessThanOrEqual, Modulus, Multiply, Subtraction, UnaryNegation, UnaryPlus).

 Chapter 2: 128-Bit Decimal Floating-Point Support 29

The “bridge” between Dyalog and .NET is able to cast floating-point numbers to or
from System.Double, System.Decimal and Dyalog.Dec128 (and perform all other
reasonable casts to integer types etc). Casting a Dyalog.Dec128 to or from strings will
perform a “lossless” conversion.

The .Net type System.Int64 will now always be cast to a 128-bit decimal number when
entering Dyalog APL, regardless of the setting of []FR. So long as no 64-bit arithmetic
is performed on such a value, it will remain a 128-bit number and can be passed back
to .Net without loss.

 Dyalog APL/W Version 13.0 Release Notes 30

 31

C H A P T E R 3

Complex Numbers

Overview
Dyalog APL Version 13.0 introduces support for complex numbers. In simple terms, a

complex number2 is a number consisting of a real and an imaginary part which is
usually written in the form a+ bi, where a and b are real numbers, and i is the standard
imaginary unit with the property i2

= −1.

Notation
Dyalog APL adopts the J notation introduced in IBM APL2 to represent the value of a
complex number which is written as aJb or ajb without spaces. The former
representation (with a capital J) is always used to display a value.

 2+¯1*.5
2J1

 .3j.5
0.3J0.5

 1.2E5J¯4E¯4
120000J¯0.0004

Arithmetic
The arithmetic primitive functions have been extended accordingly to handle complex
numbers.

 2j3+.3j.5 ⍝ (a+bi)+(c+di) = (a+c)+(b+d)i
2.3J3.5

 2j3-.3j5 ⍝ (a+bi)-(c+di) = (a-c)+(b-d)i
1.7J¯2

 2j3×.3j.5 ⍝ (a+bi)(c+di)= ac+bci+adi+bdi2
 ⍝ = (ac-bd)+(bc+ad)i
¯0.9J1.9

2 http://en.wikipedia.org/wiki/Complex_number

 Dyalog APL/W Version 13.0 Release Notes 32

The absolute value, or magnitude of a complex number is naturally obtained using the
Magnitude function

 |3j4
5

Monadic + of a complex number (a+bi) returns its conjugate (a-bi) ...

 +3j4
3J¯4

... which when multiplied by the complex number itself, produces the square of its
magnitude.

 3j4×3j¯4
25

Furthermore, adding a complex number and its conjugate produces a real number:

 3j4+3j¯4
6

The famous Euler's Identity may be expressed as follows:

 1+*○0j1 ⍝ Euler Identity
0

Circular functions
The circular functions X○Y have been extended for complex values in Y. In addition,
the following new functions have been added where a and b are the real and imaginary
parts of Y respectively and θ is the phase of Y.

(-X) ○ Y X X ○ Y

-8○Y 8 (-1+Y*2)*0.5

Y 9 a

+Y 10 |Y

Y×0J1 11 b

*Y×0J1 12

Note that 9○Y and 11○Y return the real and imaginary parts of Y respectively:

 9 11○3.5J¯1.2
3.5 ¯1.2

 9 11∘.○3.5J¯1.2 2J3 3J4
 3.5 2 3
¯1.2 3 4

 Chapter 3: Complex Numbers 33

Different Result for Power
In Version 13.0, the implementation of X*Y (Power) gives a different answer for
negative real X than in all previous Versions of Dyalog APL. This change is however
in accordance with the ISO/EEC 13751 Standard for Extended APL.

In Version 13.0, the result is the principal value; whereas in previous Versions the
result is a negative or positive real number or DOMAIN ERROR. The following
examples illustrate this point:

 ¯8 * 1 2 ÷ 3 ⍝ Version 12.1
¯2 4
 ¯8 * 1 2 ÷ 3 ⍝ Version 13.0
1J1.732050808 ¯2J3.464101615

 * (1 2 ÷ 3) × ⍟ ¯8 ⍝ Version 13.0
1J1.732050808 ¯2J3.464101615

 Dyalog APL/W Version 13.0 Release Notes 34

Comparison
In comparing two complex numbers X and Y, X=Y is 1 if the magnitude of X-Y does
not exceed ⎕CT times the larger of the magnitudes of X and Y; geometrically, X=Y if
the number smaller in magnitude lies on or within a circle centred on the one with
larger magnitude, having radius ⎕CT times the larger magnitude.

As with real values, complex values sufficiently close to Boolean or integral values are
accepted by functions which require Boolean or integral values. For example:

 2j1e¯14 ⍴ 12
12 12
 0 ⍱ 1j1e¯15
0

Note that Dyalog APL always stores complex numbers as a pair of 64-bit binary
floating-point numbers, regardless of the setting of ⎕FR. Thus, comparisons between
complex numbers and decimal floating-point numbers are subject to ⎕CT, not ⎕DCT.
This only really comes into play when determining whether the imaginary part of a
complex number is so small that it can be considered to be on the real plane.

 35

C H A P T E R 4

Search and Replace System Operators

Overview
⎕R (Replace) and ⎕S (Search) are system operators which take search pattern(s) as
their left arguments and transformation rule(s) as their right arguments; the derived
function operates on text data to perform either a search, or a search and replace
operation.

The search patterns may include Regular Expressions so that complex searches may be
performed. ⎕R and ⎕S utilise the open-source regular-expression search engine PCRE,
which is built into Dyalog APL and distributed according to the license in Appendix C.

The transformation rules are applied to the text which matches the search patterns; they
may be given as a simple character vector, numeric codes, or – for greatest flexibility –
a function.

The operators use the Variant operator to set options.

Examples of replace operations

 ('.at' ⎕R '\u0') 'The cat sat on the mat'
The CAT SAT on the MAT

In the search pattern the dot matches any character, so the pattern as a whole matches
sequences of three characters ending ‘at’. The transformation is given as a character
string, and causes the entire matching text to be folded to upper case.

 ('\w+' ⎕R {⌽⍵.Match}) 'The cat sat on the mat'
ehT tac tas no eht tam

The search pattern matches each word. The transformation is given as a function,
which receives a namespace containing various variables describing the match, and it
returns the match in reverse, which in turn replaces the matched text.

 Dyalog APL/W Version 13.0 Release Notes 36

Examples of search operations

 STR←'The cat sat on the mat'
 ('.at' ⎕S '\u0') STR
 CAT SAT MAT

The example is identical to the first, above, except that after the transformation is
applied to the matches the results are returned in a vector, not substituted into the
source text.

 ('.at' ⎕S {⍵.((1↑Offsets),1↑Lengths)}) STR
 4 3 8 3 19 3

When searching, the result vector need not contain only text and in this example the
function returns the numeric position and length of the match given to it; the resultant
vector contains these values for each of the three matches.

 ('.at' ⎕S 0 1) STR
 4 3 8 3 19 3

Here the transformation is given as a vector of numeric codes which are a short-hand
for the position and length of each match; the overall result is therefore identical to the
previous example.

These examples all operate on a simple character vector containing text, but the text
may be given in several forms - character vectors, vectors of character vectors, and
external data streams. These various forms constitute a ‘document’. When the result
also takes the form of a document it may be directed to a stream.

Syntax
{R} ← {X} (A ⎕R B) Y

The two system operators, ⎕R for replace and ⎕S for search, are syntactically
identical. With ⎕R, the input document is examined; text which matches the search
pattern is amended and the remainder is left unchanged. With ⎕S, each match in the
input document results in an item in the result whose type is dependent on the
transformation specified.

A specifies one or more search patterns, being given as a single character, a character
vector, a vector of character vectors or a vector of both characters and character
vectors. See ‘search pattern’ following.

B is the transformation to be performed on matches within the input document; it may
be either one or more transformation patterns (specified as a character, a character
vector, a vector of character vectors, or a vector of both characters and character
vectors), one or more transformation codes (specified as a numeric scalar or a numeric
vector) or a function; see ‘transformation pattern’, ‘transformation codes’ and
‘transformation function’ following.

 Chapter 4: Search and Replace System Operators 37

Y specifies the input document; see ‘input document’ below.

X optionally specifies an output stream; see ‘output’ below.

R is the result value; see ‘output’ below.

Input Document
The input document may be an array or a data stream.

When it is an array it may be given in one of two forms:

1. A character scalar or vector

2. A vector of character vectors

In Version 13.0 the only supported data stream is a native file, specified as tie number,
which is read from the current position to the end. If the file is read from the start, and
there is a valid Byte Order Mark (BOM) at the start of it, the data encoding is
determined by this BOM. Otherwise, data in the file is assumed to be encoded as
specified by the InEnc option.

Hint: once a native file has been read to the end by ⎕R or ⎕S it is possible to reset the
file position to the start so that it may be read again using:

{} ⎕NREAD tienum 82 0 0

The input document is comprised of lines of text. Line breaks may be included in the
data:

Implicitly,

 Between each item in the outer vector (type 2, above)

Explicitly, as

 carriage return

 line feed

 carriage return and line feed together, in that order

 vertical tab (U+000B)

 newline (U+0085)

 form Feed (U+000C)

 line Separator (U+2028)

 paragraph Separator (U+2029)

The implicit line ending character may be set using the EOL option. Explicit line
ending characters may also be replaced by this character - so that all line endings are
normalised - using the NEOL option.

 Dyalog APL/W Version 13.0 Release Notes 38

The input document may be processed in line mode, document mode or mixed mode.
In document mode and mixed mode, the entire input document, line ending characters
included, is passed to the search engine; in line mode the document is split on line
endings and passed to the search engine in sections without the line ending characters.
The choice of mode affects both memory usage and behaviour, as documented in the
section ‘Line, document and mixed modes’.

Output
The format of the output is dependent on whether ⎕S or ⎕R are in use, whether an
output stream is specified and, for ⎕R, the form of the input and whether the
ResultText option is specified.

An output data stream may optionally be specified. In Version 13.0 the only supported
data stream is a native file, specified as tie number, and all output will be appended to
it. Data in the stream is encoded as specified by the OutEnc option. If this encoding
specifies a Byte Order Mark and the file is initially empty then the Byte Order Mark
will be written at the start. Appending to existing data using a different encoding is
permitted but unlikely to produce desirable results. If an input stream is also used, care
must be taken to ensure the input and output streams are not the same.

⎕R
With no output stream specified and unless overridden by the ResultText option, the
derived function result will be a document which closely matches the format of the
input document, as follows:

A character scalar or vector input will result in a character vector output. Any and
all line endings in the output will be represented by line ending characters within the
character vector.

A vector of character vectors as input will result in a vector of character vectors as
document output. Any and all line endings in the output document will be implied at
the end of each character vector.

A stream as input will result in a vector of character vectors document output. Any
and all line endings in the output document will be implied at the end of each character
vector.

Note that the shape of the output document may be significantly different to that of the
input document.

If the ResultText option is specified, the output type may be forced to be a character

vector or vector of character vectors as described above, regardless of the input
document.

With an output stream specified there is no result - instead the text is appended to the
stream. If the appended text does not end with a line ending character then the line
ending character specified by the EOL option is also appended.

 Chapter 4: Search and Replace System Operators 39

⎕S
With no output stream specified, the result will be a vector containing one item for
each match in the input document, of types determined by the transformation
performed on each match.

With an output stream specified there is no result - instead each match is appended to
the stream. If any match does not end with a line ending character then the line ending
character specified by the EOL option is also appended. Only text may be written to
the stream, which means:

 When a transformation function is used, the function may only generate a
character vector result.

 Transformation codes may not be used.

Search pattern
The syntax of the search pattern is reproduced from the PCRE documentation verbatim
in appendices A and B.

There may be multiple search patterns. If more than one search pattern is specified and
more than one pattern matches the same part of the input document then priority is
given to the pattern specified first.

Transformation pattern
For each match in the input document, the transformation pattern causes the creation of
text which, for ⎕R, replaces the matching text and, for ⎕S, generates one item in the
result.

There may be either one transformation pattern, or the same number of transformation
patterns as search patterns. If there are multiple search patterns and multiple
transformation patterns then the transformation pattern used corresponds to the search
pattern which matched the input text.

Transformation patterns may not be mixed with transformation codes or functions.

 Dyalog APL/W Version 13.0 Release Notes 40

The following characters have special meaning:

% acts as a placeholder for the entire line (line mode) or document
(document mode or mixed mode) which contained the match

& acts as a placeholder for the entire portion of text which matched

\n represents a line feed character

\r represents a carriage return

\0 equivalent to &

\n acts as a placeholder for the text which matched the first to ninth
subpattern; n may be any single digit value from 1 to 9

\(n) acts as a placeholder for the text which matched the numbered
subpattern; n may have an integer value from 0 to 63.

\<name> acts as a placeholder for the text which matched the named subpattern

\\ represents the backslash character

\% represents the percent character

\& represents the ampersand character

The above may be qualified to fold matching text to upper- or lower-case by using the
u and l modifiers respectively. Character sequences beginning with the backslash place
the modifier after the backslash; character sequences with no leading backslash add
both a backslash and the modifier to the start of the sequence, for example:

\u& acts as a placeholder for the entire portion of text which matched,
folded to upper case

\l0 equivalent to \l&

Character sequences beginning with the backslash other that those shown are invalid.
All characters other than those shown are literal values and are included in the text
without modification.

 Chapter 4: Search and Replace System Operators 41

Transformation codes
The transformation codes are a numeric scalar or vector. For each match in the input
document, a numeric scalar or vector of the same shape as the transformation codes is
created, with the codes replaced with values as follows:

0. The offset from the start of the line (line mode) or document (document mode

or mixed mode) of the start of the match, origin zero.

1. The length of the match.

2. In line mode, the block number in the source document of the start of the
match. The value is origin zero. In document mode or mixed mode this value
is always zero.

3. The pattern number which matched the input document, origin zero.

Transformation codes may only be used with ⎕S.

 Dyalog APL/W Version 13.0 Release Notes 42

Transformation Function
The transformation function is called for each match within the input document. The
function is monadic and is passed a namespace, containing the following variables:

Block The entire line (line mode) or document (document mode or
mixed mode) in which the match was found.

BlockNum With line mode, the block (line) number in the source document
of the start of the match. The value is origin zero. With document
mode or mixed mode the entire document is contained within one
block and this value is always zero.

Pattern The search pattern which matched.

PatternNum The index-zero pattern number which matched.

Match The text within Block which matched Pattern.

Offsets A vector of one or more index-zero offsets relative to the start of
Block. The first value is the offset of the entire match; any and all
additional values are the offsets of the portions of the text which
matched the subpatterns, in the order of the subpatterns within
Pattern.

Lengths A vector of one or more lengths, corresponding to each value in
Offset.

Names A vector of one or more character vectors corresponding to each
of the values in Offsets, specifying the names given to the
subpatterns within Pattern. The first entry (corresponding to the
match) and all subpatterns with no name are included as length
zero character vectors.

ReplaceMode A Boolean indicating whether the function was called by ⎕R
(value 1) or ⎕S (value 0).

TextOnly A Boolean indicating whether the return value from the function
must be a character vector (value 1) or any value (value 0).

The return value from the function is used as follows:

With ⎕R the function must return a character vector. The contents of this vector are
used to replace the matching text.

With ⎕S the function may return no value. If it does return a value:

 When output is being directed to a stream it must be a character vector.

 Otherwise, it may be any value. The overall result of the derived function is
the catenation of the enclosure of each returned value into a single vector.

 Chapter 4: Search and Replace System Operators 43

The passed namespace exists over the lifetime of ⎕R or ⎕S; the function may therefore
preserve state by creating variables in the namespace.

The function may itself call ⎕R or ⎕S.

The locations of the match within Block and subpatterns within Match are given as
offsets rather than positions, i.e. the values are the number of characters preceding the
data, and are not affected by the Index Origin.

There may be only one transformation function, regardless of the number of search
patterns.

Options
Options are specified using the Variant operator. The Principal option is IC.

Default values are indicated with a tick ().

IC
When set, case is ignored in searches.

1 Matches are not case sensitive.

0 Matches are case sensitive.

Example:

 ('[AEIOU]' ⎕R 'X' ⍠ 'IC' 1) 'ABCDE abcde'
XBCDX XbcdX
 ('[AEIOU]' ⎕R 'X' ⍠ 1)'ABCDE abcde'
XBCDX XbcdX

 Dyalog APL/W Version 13.0 Release Notes 44

Mode
Specifies whether the input document is interpreted in line mode, document mode or
mixed mode.

‘L’ When line mode is set, the input document is split into separate lines
(discarding the line ending characters themselves), and each line is
processed separately. This means that the ML option applies per line,
and the '^' and '$' anchors match the start and end respectively of each
line. Because the document is split, searches can never match across
multiple lines, nor can searches for line ending characters ever succeed.
Setting line mode can result in significantly reduced memory
requirements compared with the other modes.

‘D’ When document mode is set, the entire input document is processed as a
single block. The ML option applies to this entire block, and the '^' and
'$' anchors match the start and end respectively of the block - not the
lines within it. Searches can match across lines, and can match line
ending characters.

‘M’ When mixed mode is set, the '^' and '$' anchors match the start and end
respectively of each line, as if line mode is set, but in all other respects
behaviour is as if document mode is set - the entire input document is
processed in a single block.

Examples:

 ('$' ⎕R '[Endline]' ⍠ 'Mode' 'L') 'ABC' 'DEF'
 ABC[Endline] DEF[Endline]

 ('$' ⎕R '[Endline]' ⍠ 'Mode' 'D') 'ABC' 'DEF'
 ABC DEF[Endline]

 ('$' ⎕R '[Endline]' ⍠ 'Mode' 'M') 'ABC' 'DEF'
 ABC[Endline] DEF[Endline]

DotAll
Specifies whether the dot (‘.’) character in search patterns matches line ending
characters.

0 The ‘.’ character in search patterns matches most characters, but not line
endings.

1 The ‘.’ character in search patterns matches all characters.

This option is invalid in line mode, because line endings are stripped from the input
document.

 Chapter 4: Search and Replace System Operators 45

Example:

 ('.' ⎕R 'X' ⍠'Mode' 'D') 'ABC' 'DEF'
 XXX XXX
 ('.' ⎕R 'X' ⍠('Mode' 'D')('DotAll' 1)) 'ABC' 'DEF'
 XXXXXXXX

EOL
Sets the line ending character which is implicitly present between character vectors,
when the input document is a vector of character vectors.

CR Carriage Return (U+000D)

LF Line Feed (U+000A)

CRLF Carriage Return followed by New Line

VT Vertical Tab (U+000B)

NEL New Line (U+0085)

FF Form Feed (U+000C)

LS Line Separator (U+2028)

PS Paragraph Separator (U+2029)

In the Classic Edition, setting a value which is not in ⎕AVU may result in a
TRANSLATION ERROR.

Example:

 ('\n' ⎕R'X' ⍠('Mode' 'D')('EOL' 'LF')) 'ABC' 'DEF'
 ABCXDEF

Here, the implied line ending between ‘ABC’ and ‘DEF’ is ‘\n’, not the default ‘\r\n’.

NEOL
Specifies whether explicit line ending sequences in the input document are normalised
by replacing them with the character specified using the EOL option.

0 Line endings are not normalised.

1 Line endings are normalised.

 Dyalog APL/W Version 13.0 Release Notes 46

Example:

 a←'ABC',(1↑2↓⎕AV),'DEF',(1↑3↓⎕AV),'GHI'
 ('\n'⎕S 0 ⍠ 'Mode' 'D' ⍠ 'NEOL' 1 ⍠ 'EOL' 'LF') a
3 7

‘\n’ has matched both explicit line ending characters in the input, even though they are
different.

ML
Sets a limit to the number of processed pattern matches per line (line mode) or
document (document mode and mixed mode).

Positive value n Sets the limit to the first n matches.

0 Sets no limit.

Negative value ¯n Sets the limit to exactly the nth match.

Examples:

 ('.' ⎕R 'x' ⍠ 'ML' 2) 'ABC' 'DEF'
 xxC xxF
 ('.' ⎕R 'x' ⍠ 'ML' ¯2) 'ABC' 'DEF'
 AxC DxF
 ('.' ⎕R 'x' ⍠ 'ML' ¯4 ⍠ 'Mode' 'D') 'ABC' 'DEF'
 ABC xEF

Greedy
Controls whether patterns are “greedy” (and match the maximum input possible) or are
not (and match the minimum). Within the pattern itself it is possible to specify
greediness for individual elements of the pattern; this option sets the default.

1 Greedy by default.

0 Not greedy by default.

Examples:

 ('[A-Z].*[0-9]' ⎕R 'X' ⍠ 'Greedy' 1) 'ABC123 DEF456'
X
 ('[A-Z].*[0-9]' ⎕R 'X' ⍠ 'Greedy' 0) 'ABC123 DEF456'
X23 X56

 Chapter 4: Search and Replace System Operators 47

OM
Specifies whether matches may overlap.

1 Searching continues for all patterns and then from the character
following the start of the match, thus permitting overlapping matches.

0 Searching continues from the character following the end of the match.

This option may only be used with ⎕S. With ⎕R searching always continues from the
character following the end of the match (the characters following the start of the
match will have been changed).

Examples:

 ('[0-9]+' ⎕S '\0' ⍠ 'OM' 0) 'A 1234 5678 B'
 1234 5678
 ('[0-9]+' ⎕S '\0' ⍠ 'OM' 1) 'A 1234 5678 B'
 1234 234 34 4 5678 678 78 8

InEnc
This option specifies the encoding of the input stream when it cannot be determined
automatically.

When the stream is read from its start, and the start of the stream contains a recognised
Byte Order Mark (BOM), the encoding is taken as that specified by the BOM and this
option is ignored. Otherwise, the encoding is assumed to be as specified by this option.

UTF8 The stream is processed as UTF-8 data. Note that ASCII is a
subset of UTF-8, so this default is also suitable for ASCII data.

UTF16LE The stream is processed as UTF16 little-endian data.

UTF16BE The stream is processed as UTF16 big-endian data.

ASCII The stream is processed as ASCII data. If the stream contains
any characters outside of the ASCII range then an error is
produced.

ANSI The stream is processed as ANSI (Windows-1252) data.

For compatibility with the OutEnc option, the above UTF formats may be qualified
with -BOM (e.g. UTF-BOM). For input streams, the qualified and unqualified options
are equivalent.

 Dyalog APL/W Version 13.0 Release Notes 48

OutEnc
When the output is written to a stream, the data may be encoded on one of the
following forms:

Implied If input came from a stream then the encoding format is the
same as the input stream, otherwise UTF-8

UTF8 The data is written in UTF-8 format.

UTF16LE The data is written in UTF-16 little-endian format.

UTF16BE The data is written in UTF-16 big-endian format.

ASCII The data is written in ASCII format.

ANSI The data is written in ANSI (Windows-1252) format.

The above UTF formats may be qualified with -BOM (e.g. UTF8-BOM) to specify that
a Byte Order Mark should be written at the start of the stream. For files, this is ignored
if the file already contains any data.

Enc
This option sets both InEnc and OutEnc simultaneously, with the same given value.
Any option value accepted by those options except Implied may be given.

ResultText
For ⎕R, this option determines the format of the result.

Implied The output will either be a character vector or a vector of

character vectors, dependent on the input document type

Simple The output will be a character vector. Any and all line
endings in the output will be represented by line ending
characters within the character vector.

Nested The output will be a vector of character vectors. Any and all
line endings in the output document will be implied at the end
of each character vector.

This option may only be used with ⎕R.

Examples:

 ⎕UCS ¨ ('A' ⎕R 'x') 'AB' 'CD'
 120 66 67 68
 ⎕UCS ('A' ⎕R 'x' ⍠ 'ResultText' 'Simple') 'AB' 'CD'
120 66 13 10 67 68

 Chapter 4: Search and Replace System Operators 49

Line, document and mixed modes
The Mode setting determines how the input document is packaged as a block and
passed to the search engine. In line mode each line is processed separately; in
document mode and mixed mode the entire document is presented to the search engine.
This affects both the semantics of the search expression, and memory usage.

Semantic differences

 The ML option applies per block of data.

 In line mode, search patterns cannot be constructed to span multiple lines.
Specifically, patterns that include line ending characters (such as ‘\r’) will
never match because the line endings are never presented to the search engine.

 By default the search pattern metacharacters ‘^’ and ‘$’ match the start and
end of the block of data. In line mode this is always the start and end of each
line. In document mode this is the start and end of the document. In mixed
mode the behaviour of ‘^’ and ‘$’ are amended by setting the PCRE option
‘MULTILINE’ so that they match the start and end of each line within the
document.

Memory usage differences

 Blocks of data passed to the search engine are processed and stored in the
workspace. Processing the input document in line mode limits the total
memory requirements; in particular this means that large streams can be
processed without holding all the data in the workspace at the same time.

Technical Considerations
⎕R and ⎕S utilise the open-source regular-expression search engine PCRE, which is
built into the Dyalog software and distributed according to the license in Appendix C.

Before data is passed to PCRE it is converted to UTF-8 format. This converted data is
buffered in the workspace; processing large documents may have significant memory
requirements. In line mode, the data is broken into individual lines and each is
processed separately, potentially reducing memory demands.

It is possible to save a workspace with an active ⎕R or ⎕S on the stack and execution
can continue when the workspace is reloaded with the same interpreter version. Later
versions of the interpreter may not remain compatible and may signal a DOMAIN
ERROR with explanatory message in the status window if it is unable to continue
execution.

PCRE has a buffer length limit of 231 bytes (2GB). UTF-8 encodes each character
using between 1 and 6 bytes (typically 1 or 3). In the very worst case, where every
character is encoded in 6 bytes, the maximum block length which can be searched
would be 357,913,940 characters.

 Dyalog APL/W Version 13.0 Release Notes 50

Further Examples
Several of the examples use the following vector as the input document:

 text
To be or not to be– that is the question:
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles

Replace all upper and lower-case vowels by 'X':

 ('[aeiou]' ⎕R 'X' ⍠ 'IC' 1) text
TX bX Xr nXt tX bX– thXt Xs thX qXXstXXn:
WhXthXr 'tXs nXblXr Xn thX mXnd tX sXffXr
ThX slXngs Xnd XrrXws Xf XXtrXgXXXs fXrtXnX,
Xr tX tXkX Xrms XgXXnst X sXX Xf trXXblXs

Replace only the second vowel on each line by '\VOWEL\':

 ('[aeiou]' ⎕R '\\VOWEL\\' ⍠ ('IC' 1)('ML' ¯2)) text
To b\VOWEL\ or not to be– that is the question:
Wheth\VOWEL\r 'tis nobler in the mind to suffer
The sl\VOWEL\ngs and arrows of outrageous fortune,
Or t\VOWEL\ take arms against a sea of troubles

Case fold each word:

 ('(?<first>\w)(?<remainder>\w*)' ⎕R
'\u<first>\l<remainder>') text
To Be Or Not To Be– That Is The Question:
Whether 'Tis Nobler In The Mind To Suffer
The Slings And Arrows Of Outrageous Fortune,
Or To Take Arms Against A Sea Of Troubles

Extract only the lines with characters ‘or’ (in upper or lower case) on them:

 ↑('or' ⎕S '%' ⍠ ('IC' 1)('ML' 1)) text
To be or not to be– that is the question:
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles

Identify which lines contain the word ‘or’ (in upper or lower case) on them:

 ('\bor\b'⎕S 2⍠('IC' 1)('ML' 1))text
0 3

Note the difference between the characters ‘or’ (which appear in ‘fortune’) and the

word ‘or’.

Place every non-space sequence of characters in brackets:

 ('[^\s]+' ⎕R '(&)') 'To be or not to be, that is the
question'
(To) (be) (or) (not) (to) (be,) (that) (is) (the) (question)

 Chapter 4: Search and Replace System Operators 51

Replace all sequences of one or more spaces by newline. Note that the effect of
this is dependent on the input format:

Character vector input results in a single character vector output with embedded
newlines:

]display ('\s+' ⎕R '\r') 'To be or not to be, that
is the question'
┌→───────┐
│To │
│be │
│or │
│not │
│to │
│be, │
│that │
│is │
│the │
│question│
└────────┘

A vector of two character vectors as input results in a vector of 10 character vectors
output:

]display ('\s+' ⎕R '\r') 'To be or not to be,' 'that
is the question'
┌→───┐
│ ┌→─┐ ┌→─┐ ┌→─┐ ┌→──┐ ┌→─┐ ┌→──┐ ┌→───┐ ┌→─┐ ┌→──┐ ┌→───────┐ │
│ │To│ │be│ │or│ │not│ │to│ │be,│ │that│ │is│ │the│ │question│ │
│ └──┘ └──┘ └──┘ └───┘ └──┘ └───┘ └────┘ └──┘ └───┘ └────────┘ │
└∊───┘

 Dyalog APL/W Version 13.0 Release Notes 52

Change numerals to their expanded names, using a function:

 ∇r←f a
[1] r←' ',⊃(⍎a.Match)↓'zero' 'one' 'two' 'three' 'four'
 'five' 'six' 'seven' 'eight' 'nine'
 ∇
 verbose←('[0-9]' ⎕R f)
 verbose ⍕27×56×87
 one three one five four four

Swap ‘red’ and ‘blue’:

 ('red' 'blue' ⎕R 'blue' 'red') 'red hat blue coat'
blue hat red coat

Convert a comma separated values (CSV) file so that

a) dates in the first field are converted from European format to ISO, and

b) currency values are converted from Deutsche Marks (DEM) to Euros (DEM
1.95583 to €1).

The currency conversion requires the use of a function. Note the nested use of ⎕R.

Input file:

01/03/1980,Widgets,DEM 10.20
02/04/1980,Bolts,DEM 61.75
17/06/1980,Nuts; special rate DEM 17.00,DEM 17.00
18/07/1980,Hammer,DEM 1.25

Output file:

1980-03-01,Widgets,€ 5.21
1980-04-02,Bolts,€ 31.57
1980-06-17,Nuts; special rate DEM 17.00,€ 8.69
1980-07-18,Hammer,€ 0.63

 Chapter 4: Search and Replace System Operators 53

 ∇ ret←f a;d;m;y;v
[1] ⎕IO←0
[2] :Select a.PatternNum
[3] :Case 0
[4] d m y←{a.Match[a.Offsets[⍵+1]+⍳a.Lengths[⍵+1]]}¨⍳3
[5] ret←y,'-',m,'-',d,','
[6] :Else
[7] v←⍎a.Block[a.Offsets[1]+⍳a.Lengths[1]]
[8] v÷←1.95583
[9] ret←',€ ',('(\d+\.\d\d).*'⎕R'\1')⍕v
[10] :EndSelect
 ∇

 in ← 'x.csv' ⎕NTIE 0
 out ← 'new.csv' ⎕NCREATE 0
 dateptn←'(\d{2})/(\d{2})/(\d{4}),'
 valptn←',DEM ([0-9.]+)'
 out (dateptn valptn ⎕R f) in
 ⎕nuntie¨in out

Create a simple profanity filter. For the list of objectionable words:

 profanity←'bleeding' 'heck'

first construct a pattern which will match the words:

 ptn←(('^' '$' '\r\n') ⎕R '\\b(' ')\\b' '|'
 ⎕OPT 'Mode' 'D') profanity
 ptn
\b(bleeding|heck)\b

then a function that uses this pattern:

 sanitise←ptn ⎕R '****' ⎕opt 1
 sanitise '"Heck", I said'
"****", I said

 Dyalog APL/W Version 13.0 Release Notes 54

 55

C H A P T E R 5

Reference to Language Enhancements

This Chapter provides new sections for each of the primitive and system functions that
have been introduced or enhanced in Version 13.0.

New Primitive Operators, Functions, System Functions & Variables

Identity R←⊢Y

Right R←X⊢Y

Same R←⊣Y

Left R←X⊣Y

Variant operator {R}←{X}(f ⍠ B)Y
{R}←{X}(f ⎕OPT B)Y

Decimal Comparison Tolerance ⎕DCT

Floating-point Representation ⎕FR

Space Indicator ⎕RSI

Enhanced Primitive Functions, System Functions & Variables

Drop R←X↓Y

Take R←X↑Y

Index R←{X}⌷Y

Data Representation R←⎕DR Y

 Dyalog APL/W Version 13.0 Release Notes 56

Complex Numbers

The following table lists the Primitive Functions & System Functions which have been
updated to support Complex Numbers

Add R←X+Y

And, Lowest Common Multiple R←X^Y

Binomial R←X!Y

Ceiling R←⌈Y

Circular R←X○Y

Conjugate3 R←+Y

Decode R←X⊥Y

Divide R←X÷Y

Direction4 R←×Y

Reciprocal R←÷Y

Equal R←X=Y

Exponential R←*Y

Factorial R←!Y

Floor R←⌊Y

Logarithm R←X⍟Y

Magnitude R←|Y

Matrix Divide R←X ⌹Y

Matrix Inverse R← ⌹Y

Multiply R←X×Y

Natural Logarithm R←⍟Y

Negative R←-Y

Pi Times R←○Y

Power R←X*Y

Reciprocal R←÷Y

Subtract R←X-Y

3 Previously known as Identity.
4 Previously known as Signum.

 Chapter 5: Language Enhancements 57

Other functions such as Match, Membership, Unique, Union, Intersection and
functions that operate on the structure of arrays have also been modified to support
complex numbers. However the changes have minimal or no impact on the
documentation and are therefore not included in these Release Notes.

The following table lists those functions that do not accept complex numbers in
arguments: Note that a number is complex if its has a non-zero imaginary part.

Functions outside the domain of complex numbers

Deal R←X?Y

Grade Down R←⍒Y

Grade Up R←⍋Y

Greater than R←X>Y

Greater or Equal R←X≥Y

Less than R←X<Y

Less or Equal R←X≤Y

Maximum R←X⌈Y

Minimum R←X⌊Y

Roll R←?Y

 Dyalog APL/W Version 13.0 Release Notes 58

Add: R←X+Y

Y must be numeric. X must be numeric. R is the arithmetic sum of X and Y. R is
numeric. This function is also known as Plus.

Examples

 1 2 + 3 4
4 6

 1 2 + 3,⊂4 5
4 6 7

 1J1 2J2 + 3J3
4J4 5J5

 ¯5+4J4 5J5
¯1J4 0J5

 Chapter 5: Language Enhancements 59

And, Lowest Common Multiple: R←X^Y

Case 1: X and Y are Boolean

R is Boolean is determined as follows:

 X Y R

 0 0 0
 0 1 0
 1 0 0
 1 1 1

Note that the ASCII caret (^) will also be interpreted as an APL And (^).

Example

 0 1 0 1 ^ 0 0 1 1
0 0 0 1

Case 2: Either or both X and Y are numeric (non-Boolean)

R is the lowest common multiple of X and Y. Note that in this case, ⎕CT is an implicit
argument.

Example

 15 1 2 7 ^ 35 1 4 0
105 1 4 0

 2 3 4∧0j1 1j2 2j3
2 3J6 8J12

 2j2 2j4∧5j5 4j4
10J10 ¯4J12

 Dyalog APL/W Version 13.0 Release Notes 60

Binomial: R←X!Y

X and Y may be any numbers except that if Y is a negative integer then X must be a
whole number (integer). R is numeric. An element of R is integer if corresponding
elements of X and Y are integers. Binomial is defined in terms of the function Factorial
for positive integer arguments:

 X!Y ←→ (!Y)÷(!X)×!Y-X

For other arguments, results are derived smoothly from the Beta function:

 Beta(X,Y) ←→ ÷Y×(X-1)!X+Y-1

For positive integer arguments, R is the number of selections of X things from Y things.

Example

 1 1.2 1.4 1.6 1.8 2!5
5 6.105689248 7.219424686 8.281104786 9.227916704 10

 2!3j2
1J5

Ceiling: R←⌈Y

Ceiling is defined in terms of Floor as ⌈Y←→-⌊-Y

Y must be numeric.

If an element of Y is real, the corresponding element of R is the least integer greater
than or equal to the value of Y.

If an element of Y is complex, the corresponding element of R, depends on the
relationship between the real and imaginary parts of the numbers in Y.

Examples

 ⌈¯2.3 0.1 100 3.3
¯2 1 100 4

 ⌈1.2j2.5 1.2j¯2.5
1J3 1J¯2

For further explanation, see Floor.

⎕CT is an implied argument of Ceiling.

 Chapter 5: Language Enhancements 61

Circular: R←X○Y

Y must be numeric. X must be an integer in the range ¯12 ≤ X ≤ 12. R is numeric.

X determines which of a family of trigonometric, hyperbolic, Pythagorean and complex
functions to apply to Y, from the following table. Note that when Y is complex, a and
b are used to represent its real and imaginary parts, while θ represents its phase.

(-X) ○ Y

X

X ○ Y

(1-Y*2)*.5 0 (1-Y*2)*.5

Arcsin Y 1 Sine Y

Arccos Y 2 Cosine Y

Arctan Y 3 Tangent Y

(Y+1)×((Y-1)÷Y+1)*0.5 4 (1+Y*2)*.5

Arcsinh Y 5 Sinh Y

Arccosh Y 6 Cosh Y

Arctanh Y 7 Tanh Y

-8○Y 8 (-1+Y*2)*0.5

Y 9 a

+Y 10 |Y

Y×0J1 11 b

*Y×0J1 12

 Dyalog APL/W Version 13.0 Release Notes 62

Examples

 0 ¯1 ○ 1
0 1.570796327

 1○(PI←○1)÷2 3 4
1 0.8660254038 0.7071067812

 2○PI÷3
0.5

 9 11○3.5J¯1.2
3.5 ¯1.2

 9 11∘.○3.5J¯1.2 2J3 3J4
 3.5 2 3
¯1.2 3 4

Conjugate: R←+Y

If Y is complex, R is Y with the imaginary part of all elements negated.

If Y is real or non-numeric, R is the same array unchanged.

Examples

 +3j4
3J¯4
 +1j2 2j3 3j4
1J¯2 2J¯3 3J¯4

 3j4++3j4
6
 3j4×+3j4
25

 +A←⍳5
1 2 3 4 5

 +⎕EX'A'
1

 Chapter 5: Language Enhancements 63

Decode: R←X⊥Y

Y must be a simple numeric array. X must be a simple numeric array. R is the numeric
array which results from the evaluation of Y in the number system with radix X.

X and Y are conformable if the length of the last axis of X is the same as the length of
the first axis of Y. A scalar or unit vector is extended to a vector of the required length.
If the last axis of X or the first axis of Y has a length of 1, the array is extended along
that axis to conform with the other argument.

The shape of R is the catenation of the shape of X less the last dimension with the
shape of Y less the first dimension. That is:

 ⍴R ←→ (¯1↓⍴X),1↓⍴Y

For vector arguments, each element of X defines the ratio between the units for
corresponding pairs of elements in Y. The first element of X has no effect on the result.

This function is also known as Base Value.

Examples

 60 60⊥3 13
193

 0 60⊥3 13
193

 60⊥3 13
193

 2⊥1 0 1 0
10

Polynomial Evaluation

If X is a scalar and Y a vector of length n, decode evaluates the polynomial

 (Index origin 1)

 2⊥1 2 3 4
26
 3⊥1 2 3 4
58
 1j1⊥1 2 3 4
5J9

 Dyalog APL/W Version 13.0 Release Notes 64

For higher order array arguments, each of the vectors along the last axis of X is taken
as the radix vector for each of the vectors along the first axis of Y.

Examples

 M
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 A
1 1 1
2 2 2
3 3 3
4 4 4

 A⊥M
0 1 1 2 1 2 2 3
0 1 2 3 4 5 6 7
0 1 3 4 9 10 12 13
0 1 4 5 16 17 20 21

Scalar extension may be applied:

 2⊥M
0 1 2 3 4 5 6 7

Extension along a unit axis may be applied:

 +A←2 1⍴2 10
 2
10
 A⊥M
0 1 2 3 4 5 6 7
0 1 10 11 100 101 110 111

 Chapter 5: Language Enhancements 65

Direction (Signum): R←×Y

Y may be any numeric array.

Where an element of Y is real, the corresponding element of R is an integer whose
value indicates whether the value is negative (¯1), zero (0) or positive (1).

Where an element of Y is complex, the corresponding element of R is a number with
the same phase but with magnitude (absolute value) 1. It is equivalent to Y÷|Y.

Examples

 ×¯15.3 0 101
¯1 0 1

 ×3j4 4j5
0.6J0.8 0.6246950476J0.7808688094

 {⍵÷|⍵}3j4 4j5
0.6J0.8 0.6246950476J0.7808688094

 |×3j4 4j5
1 1

Divide: R←X÷Y

Y must be a numeric array. X must be a numeric array. R is the numeric array
resulting from X divided by Y. System variable ⎕DIV is an implicit argument of
Divide.

If ⎕DIV=0 and Y=0 then if X=0, the result of X÷Y is 1; if X≠0 then X÷Y is a DOMAIN
ERROR.

If ⎕DIV=1 and Y=0, the result of X÷Y is 0 for all values of X.

Examples

 2 0 5÷4 0 2
0.5 1 2.5

 3j1 2.5 4j5÷2 1j1 .2
1.5J0.5 1.25J¯1.25 20J25

 ⎕DIV←1
 2 0 5÷4 0 0
0.5 0 0

 Dyalog APL/W Version 13.0 Release Notes 66

Drop: R←X↓Y

Y may be any array. X must be a simple scalar or vector of integers. If X is a scalar, it
is treated as a one-element vector. If Y is a scalar, it is treated as an array whose shape
is (⍴X)⍴1. After any scalar extensions, the shape of X must be less than or equal to
the rank of Y. Any missing trailing items in X default to 0.

R is an array with the same rank as Y but with elements removed from the vectors
along each of the axes of Y. For the Ith axis:

1. if X[I] is positive, all but the first X[I] elements of the vectors result.

2. if X[I] is negative, all but the last X[I] elements of the vectors result.

If the magnitude of X[I] exceeds the length of the Ith axis, the result is an empty
array with zero length along that axis.

Examples

 4↓'OVERBOARD'
BOARD

 ¯5↓'OVERBOARD'
OVER

 ⍴10↓'OVERBOARD'
0

 M
ONE
FAT
FLY
 0 ¯2↓M
O
F
F

 ¯2 ¯1↓M
ON
 1↓M
FAT
FLY
 M3←2 3 4⍴⎕A

 1 1↓M3
QRST
UVWX
 ¯1 ¯1↓M3
ABCD
EFGH

 Chapter 5: Language Enhancements 67

Equal: R←X=Y

Y may be any array. X may be any array. R is Boolean. ⎕CT is an implicit argument of
Equal.

If X and Y are character, then R is 1 if they are the same character. If X is character and
Y is numeric, or vice-versa, then R is 0.

If X and Y are numeric, then R is 1 if X and Y are within comparison tolerance of each
other.

For real numbers X and Y, X is considered equal to Y if (|X-Y) is not greater than
⎕CT×(|X)⌈|Y.

For complex numbers X=Y is 1 if the magnitude of X-Y does not exceed ⎕CT times the
larger of the magnitudes of X and Y; geometrically, X=Y if the number smaller in
magnitude lies on or within a circle centred on the one with larger magnitude, having
radius ⎕CT times the larger magnitude.

 Dyalog APL/W Version 13.0 Release Notes 68

Examples

 3=3.1 3 ¯2 ¯3
0 1 0 0

 a←2+0j1×⎕CT
 a
2J1E¯14
 a=2j.00000000000001 2j.0000000000001
1 0 1

 'CAT'='FAT'
0 1 1

 'CAT'=1 2 3
0 0 0

 'CAT'='C' 2 3
1 0 0

 ⎕CT←1E¯10
 1=1.000000000001
1

 1=1.0000001
0

 Chapter 5: Language Enhancements 69

Exponential: R←*Y

Y must be numeric. R is numeric and is the Yth power of e, the base of natural
logarithms.

Example

 *1 0
2.718281828 1

 *0j1 1j2
0.5403023059J0.8414709848 ¯1.131204384J2.471726672

 1+*○0j1 ⍝ Euler Identity
0

Factorial: R←!Y

Y must be numeric excluding negative integers. R is numeric. R is the product of the
first Y integers for positive integer values of Y. For non-integral values of Y, !Y is
equivalent to the gamma function of Y+1.

Examples

 !1 2 3 4 5
1 2 6 24 120

 !¯1.5 0 1.5 3.3
¯3.544907702 1 1.329340388 8.85534336

 !0j1 1j2
0.4980156681J¯0.1549498283 0.1122942423J0.3236128855

 Dyalog APL/W Version 13.0 Release Notes 70

Floor: R←⌊Y

Y must be numeric.

For real numbers, R is the largest integer value less than or equal to Y within the
comparison tolerance ⎕CT.

Examples

 ⌊¯2.3 0.1 100 3.3
¯3 0 100 3

 ⌊0.5 + 0.4 0.5 0.6
0 1 1

For complex numbers, R depends on the relationship between the real and imaginary
parts of the numbers in Y.

 ⌊1j3.2 3.3j2.5 ¯3.3j¯2.5
1J3 3J2 ¯3J¯3

The following (deliberately) simple function illustrates one way to express the rules for
evaluating complex Floor.

 ∇ fl←CpxFloor cpxs;a;b
[1] ⍝ Complex floor of scalar complex number (a+ib)
[2] a b←9 11○cpxs
[3] :If 1>(a-⌊a)+b-⌊b
[4] fl←(⌊a)+0J1×⌊b
[5] :Else
[6] :If (a-⌊a)<b-⌊b
[7] fl←(⌊a)+0J1×1+⌊b
[8] :Else
[9] fl←(1+⌊a)+0J1×⌊b
[10] :EndIf
[11] :EndIf
 ∇

 CpxFloor¨1j3.2 3.3j2.5 ¯3.3j¯2.5
1J3 3J2 ¯3J¯3

⎕CT is an implicit argument of Floor.

 Chapter 5: Language Enhancements 71

Format (Dyadic): R←X⍕Y

Y must be a simple real (non-complex) numeric array. X must be a simple integer
scalar or vector. R is a character array displaying the array Y according to the
specification X. R has rank 1⌈⍴⍴Y and ¯1↓⍴R is ¯1↓⍴Y.

Conformability requires that if X has more than two elements, then ⍴X must be
2×¯1↑⍴Y. If X contains one element, it is extended to (2×¯1↑⍴Y)⍴0,X. If X
contains 2 elements, it is extended to (2×¯1↑⍴Y)⍴X.

X specifies two numbers (possibly after extension) for each column in Y. For this
purpose, scalar Y is treated as a one-element vector. Each pair of numbers in X
identifies a format width (W) and a format precision (P).

If P is 0, the column is to be formatted as integers.

Examples

 5 0 ⍕ 2 3⍴⍳6
 1 2 3
 4 5 6

 4 0⍕1.1 2 ¯4 2.547
 1 2 ¯4 3

If P is positive, the format is floating point with P significant digits to be displayed
after the decimal point.

Example

 4 1⍕1.1 2 ¯4 2.547
 1.1 2.0¯4.0 2.5

If P is negative, scaled format is used with |P digits in the mantissa.

Example

 7 ¯3⍕5 15 155 1555
5.00E0 1.50E1 1.55E2 1.56E3

 Dyalog APL/W Version 13.0 Release Notes 72

If W is 0 or absent, then the width of the corresponding columns of R are determined by
the maximum width required by any element in the corresponding columns of Y, plus
one separating space.

Example

 3⍕2 3⍴10 15.2346 ¯17.1 2 3 4
 10.000 15.235 ¯17.100
 2.000 3.000 4.000

If a formatted element exceeds its specified field width when W>0, the field width for
that element is filled with asterisks.

Example

 3 0 6 2 ⍕ 3 2⍴10.1 15 1001 22.357 101 1110.1
 10 15.00
*** 22.36
101******

If the format precision exceeds the internal precision, low order digits are replaced by
the symbol '_'.

Example

 26⍕2*100
1267650600228229_______________.__________________________

 ⍴26⍕2*100
59

 0 20⍕÷3
 0.3333333333333333____

 0 ¯20⍕÷3
 3.333333333333333____E¯1

The shape of R is the same as the shape of Y except that the last dimension of Y is the
sum of the field widths specified in X or deduced by the function. If Y is a scalar, the
shape of R is the field width.

 ⍴5 2 ⍕ 2 3 4⍴⍳24
2 3 20

If any element of Y is complex, dyadic ⍕ reports a DOMAIN ERROR.

 Chapter 5: Language Enhancements 73

Identity: R← ⊢Y

Y may be any array. The result R is the argument Y.

Example

 ⊢'abc' 1 2 3
 abc 1 2 3

Index: R←{X}⌷Y

Dyadic case

X must be a scalar or vector of depth ≤2 of integers each ≥⎕IO. Y may be any array. In
general, the result R is similar to that obtained by square-bracket indexing in that:

 (I J ... ⌷ Y) ≡ Y[I;J;...]

The length of left argument X must be less than or equal to the rank of right argument
Y. Any missing trailing items of X default to the index vector of the corresponding axis
of Y.

Note that in common with square-bracket indexing, items of the left argument X may
be of any rank and that the shape of the result is the concatenation of the shapes of the
items of the left argument:

 (⍴X⌷Y) ≡ ↑,/⍴¨X

Index is sometimes referred to as squad indexing.

Note that index may be used with selective specification.

⎕IO is an implicit argument of index.

 Dyalog APL/W Version 13.0 Release Notes 74

Examples

 ⎕IO←1

 VEC←111 222 333 444
 3⌷VEC
333
 (⊂4 3)⌷VEC
444 333
 (⊂2 3⍴3 1 4 1 2 3)⌷VEC
333 111 444
111 222 333

 ⎕←MAT←10⊥¨⍳3 4
11 12 13 14
21 22 23 24
31 32 33 34

 2 1⌷MAT
21
 2⌷MAT
21 22 23 24

 3(2 1)⌷MAT
32 31
 (2 3)1⌷MAT
21 31
 (2 3)(,1)⌷MAT
21
31
 ⍴(2 1⍴1)(3 4⍴2)⌷MAT
2 1 3 4
 ⍴⍬ ⍬⌷MAT
0 0
 (3(2 1)⌷MAT)←0 ⋄ MAT ⍝ Selective assignment.
11 12 13 14
21 22 23 24
 0 0 33 34

Monadic case

If Y is an array, Y is returned.

If Y is a ref to an instance of a Class with a Default property, all elements of the
Default property are returned. For example, if Item is the default property of
MyClass, and imc is an Instance of MyClass, then by definition:

 imc.Item≡⌷imc

 Chapter 5: Language Enhancements 75

NONCE ERROR is reported if the Default Property is Keyed, because in this case APL
has no way to determine the list of all the elements.

Note that the values of the index set are obtained or assigned by calls to the
corresponding PropertyGet and PropertySet functions. Furthermore, if there is a
sequence of primitive functions to the left of the Index function, that operate on the
index set itself (functions such as dyadic ⍴,↑,↓,⊃) as opposed to functions that
operate on the values of the index set (functions such as +,⌈,⌊,⍴¨), calls to the
PropertyGet and PropertySet functions are deferred until the required index set has
been completely determined. The full set of functions that cause deferral of calls to the
PropertyGet and PropertySet functions is the same as the set of functions that applies to
selective specification.

If for example, CompFile is an Instance of a Class with a Default Numbered
Property, the expression:

 1↑⌽⌷CompFile

would only call the PropertyGet function (for CompFile) once, to get the value of the
last element.

Note that similarly, the expression

 10000⍴⌷CompFile

would call the PropertyGet function 10000 times, on repeated indices if CompFile
has less than 10000 elements. The deferral of access function calls is intended to be an
optimisation, but can have the opposite effect. You can avoid unnecessary repetitive
calls by assigning the result of ⌷ to a temporary variable.

 Dyalog APL/W Version 13.0 Release Notes 76

Left: R←X⊣Y

X and Y may be any arrays.

The result R is the left argument X.

Example

 42⊣'abc' 1 2 3
42

Note that when ⊣ is applied using reduction, the derived function selects the first sub-
array of the array along the specified dimension. This is implemented as an idiom.

Examples

 ⊣/1 2 3
1

 mat←↑'scent' 'canoe' 'arson' 'rouse' 'fleet'
 ⊣⌿mat ⍝ first row
scent
 ⊣/mat ⍝ first column
scarf

 ⊣/[2]2 3 4⍴⍳24 ⍝ first row from each plane
 1 2 3 4
13 14 15 16

Similarly, with expansion:

 ⊣\mat
sssss
ccccc
aaaaa
rrrrr
fffff
 ⊣⍀mat
scent
scent
scent
scent
scent

 Chapter 5: Language Enhancements 77

Logarithm: R←X⍟Y

Y must be a positive numeric array. X must be a positive numeric array. X cannot be 1
unless Y is also 1. R is the base X logarithm of Y.

Note that Logarithm (dyadic ⍟) is defined in terms of Natural Logarithm (monadic ⍟)
as:

 X⍟Y←→(⍟Y)÷⍟X

Examples

 10 ⍟ 100 2
2 0.3010299957

 2 10⍟0J1 1J2
0J2.2661800709 0.34948500217J0.48082857878

 1 ⍟ 1
1
 2 ⍟ 1
0

Magnitude: R←|Y

Y may be any numeric array. R is numeric composed of the absolute (unsigned) values
of Y.

Note that the magnitude of a complex number is defined to be

Examples

 |2 ¯3.4 0 ¯2.7
2 3.4 0 2.7

 |3j4
5

 Dyalog APL/W Version 13.0 Release Notes 78

Matrix Divide: R←X⌹Y

Y must be a simple numeric array of rank 2 or less. X must be a simple numeric array
of rank 2 or less. Y must be non-singular. A scalar argument is treated as a matrix
with one-element. If Y is a vector, it is treated as a single column matrix. If X is a
vector, it is treated as a single column matrix. The number of rows in X and Y must be
the same. Y must have at least the same number of rows as columns.

R is the result of matrix division of X by Y. That is, the matrix product Y+.×R is X.

R is determined such that (X-Y+.×R)*2 is minimised.

The shape of R is (1↓⍴Y),1↓⍴X.

Examples

 ⎕PP←5

 B
3 1 4
1 5 9
2 6 5

 35 89 79 ⌹ B
2.1444 8.2111 5.0889

 A
35 36
89 88
79 75

 A ⌹ B
2.1444 2.1889
8.2111 7.1222
5.0889 5.5778

 Chapter 5: Language Enhancements 79

If there are more rows than columns in the right argument, the least squares solution
results. In the following example, the constants a and b which provide the best fit for
the set of equations represented by P = a + bQ are determined:

 Q
1 1
1 2
1 3
1 4
1 5
1 6

 P
12.03 8.78 6.01 3.75 ¯0.31 ¯2.79

 P⌹Q
14.941 ¯2.9609

Example: linear regression on complex numbers

 x←j⌿¯50+?2 13 4⍴100
 y←(x+.×3 4 5 6) + j⌿0.0001×¯50+?2 13⍴100
 ⍴x
13 4
 ⍴y
13
 y ⌹ x
2.99999J0.0000134459 4.00001J¯0.000044302
4.99995J0.0000031282 5.99999J¯0.00000939231
 ⍝ i.e. y⌹x recovered the coefficients 3 4 5 6

 Dyalog APL/W Version 13.0 Release Notes 80

Matrix Inverse: R←⌹Y

Y must be a simple array of rank 2 or less. Y must be non-singular. If Y is a scalar, it
is treated as a one-element matrix. If Y is a vector, it is treated as a single-column
matrix. Y must have at least the same number of rows as columns.

R is the inverse of Y if Y is a square matrix, or the left inverse of Y if Y is not a square
matrix. That is, R+.×Y is an identity matrix.

The shape of R is ⌽⍴Y.

Examples

 M
4 ¯1
2 1

 +A←⌹M
 0.1666666667 0.1666666667
¯0.3333333333 0.6666666667

Within calculation accuracy, A+.×M is the identity matrix.

 A+.×M
1 0
0 1

 ⎕RL←7*5

 j←{⍺←0 ⋄ ⍺+0J1×⍵}
 x←j⌿¯50+?2 5 5⍴100
 x
¯37J¯41 25J015 ¯5J¯09 3J020 ¯29J041
¯46J026 17J¯24 17J¯46 43J023 ¯12J¯18
 1J013 33J025 ¯47J049 ¯45J¯14 2J¯26
 17J048 ¯50J022 ¯12J025 ¯44J015 ¯9J¯43
 18J013 8J038 43J¯23 34J¯07 2J026
 ⍴x
5 5
 id←{∘.=⍨⍳⍵} ⍝ identity matrix of order ⍵
 ⌈/,| (id 1↑⍴x) - x+.×⌹x
3.66384E¯16

 Chapter 5: Language Enhancements 81

Multiply: R←X×Y

Y may be any numeric array. X may be any numeric array. R is the arithmetic product
of X and Y.

This function is also known as Times.

Example

 3 2 1 0 × 2 4 9 6
6 8 9 0

 2j3×.3j.5 1j2 3j4 .5
¯0.9J1.9 ¯4J7 ¯6J17 1J1.5

Natural Logarithm: R←⍟Y

Y must be a positive numeric array. R is numeric. R is the natural (or Napierian)
logarithm of Y whose base is the mathematical constant e=2.71828....

Example

 ⍟1 2
0 0.6931471806

 ⍟2 2⍴0j1 1j2 2j3 3j4
0.0000000000J1.5707963268 0.80471895622J1.1071487178
1.2824746787J0.98279372325 1.60943791240J0.927295218

Negative: R←-Y

Y may be any numeric array. R is numeric and is the negative value of Y. For complex
numbers both the real and imaginary parts are negated.

Example

 -4 2 0 ¯3 ¯5
¯4 ¯2 0 3 5

 - 1j2 ¯2J3 4J¯5
¯1J¯2 2J¯3 ¯4J5

 Dyalog APL/W Version 13.0 Release Notes 82

Pi Times: R←○Y

Y may be any numeric array. R is numeric. The value of R is the product of the

mathematical constant =3.14159... (Pi), and Y.

Example

 ○0.5 1 2
1.570796327 3.141592654 6.283185307

 ○0J1
0J3.1415926536

 *○0J1 ⍝ Euler
¯1

 Chapter 5: Language Enhancements 83

Power: R←X*Y

Y must be a numeric array. X must be a numeric array. R is numeric. The value of R
is X raised to the power of Y.

If Y is zero, R is defined to be 1.

If X is zero, Y must be non-negative.

If X is negative, and Y can be approximated as a rational number of the form P÷Q
where P and Q are relatively prime integers, then:

 if Q is even, X*Y gives a DOMAIN ERROR

 if Q is odd and P is even, then X*Y ←→ (|X)*Y

 if Q and P are both odd, then X*Y ←→ -(|X)*Y

If X is negative, and Y cannot be approximated as a rational number, then:

 X*Y ←→ -(|X)*Y.

Examples

 2*2 ¯2
4 0.25

 9 64*0.5
3 8

 ¯27*2 3,(1 2÷3),1.2
729 ¯19683 3 9 52.19591521

 *2 2⍴0j1 1j2 2j3 ¯4j¯5
 0.5403023059J0.8414709848 ¯1.131204384000J2.471726672
¯7.3151100950J1.042743656 0.005195454155J0.01756331074

 *○0J1 ⍝ Euler
¯1

 Dyalog APL/W Version 13.0 Release Notes 84

Reciprocal: R←÷Y

Y must be a numeric array. R is numeric. R is the reciprocal of Y; that is 1÷Y. If
⎕DIV=0, ÷0 results in a DOMAIN ERROR. If ⎕DIV=1, ÷0 returns 0.

⎕DIV is an implicit argument of Reciprocal.

Examples

 ÷4 2 5
0.25 0.5 0.2

 ÷0j1 0j¯1 2j2 4j4
0J¯1 0J1 0.25J¯0.25 0.125J¯0.125

 ⎕DIV ← 1

 ÷0 0.5
0 2

Residue: R←X|Y

Y may be any numeric array. X may be any numeric array.

For positive arguments, R is the remainder when Y is divided by X. If X=0, R is Y. For
other argument values, R is Y-N×X where N is some integer such that R lies between 0
and X, but is not equal to X.

⎕CT is an implicit argument of Residue.

Examples

 3 3 ¯3 ¯3|¯5 5 ¯4 4
1 2 ¯1 ¯2

 0.5|3.12 ¯1 ¯0.6
0.12 0 0.4

 ¯1 0 1|¯5.25 0 2.41
¯0.25 0 0.41

 1j2|2j3 3j4 5j6
1J1 ¯1J1 0J1

Note that the ASCII pipe (¦) may also be interpreted as Residue (|).

 Chapter 5: Language Enhancements 85

Right: R←X⊢Y

X and Y may be any arrays. The result R is the right argument Y.

Example

 42 ⊢'abc' 1 2 3
 abc 1 2 3

Note that when ⊢ is applied using reduction, the derived function selects the last sub-
array of the array along the specified dimension. This is implemented as an idiom.

Examples

 ⊢/1 2 3
3

 mat←↑'scent' 'canoe' 'arson' 'rouse' 'fleet'
 ⊢⌿mat ⍝ last row
fleet
 ⊢/mat ⍝ last column
Tenet

 ⊢/[2]2 3 4⍴⍳24 ⍝ last row from each plane

 9 10 11 12
21 22 23 24

Same: R←⊣Y

Y may be any array.

The result R is the argument Y.

Examples

 ⊣'abc' 1 2 3
 abc 1 2 3

 Dyalog APL/W Version 13.0 Release Notes 86

Subtract: R←X-Y

Y may be any numeric array. X may be any numeric array. R is numeric. The value of
R is the difference between X and Y.

This function is also known as Minus.

Example

 3 ¯2 4 0 - 2 1 ¯2 4
1 ¯3 6 ¯4

 2j3-.3j5 ⍝ (a+bi)-(c+di) = (a-c)+(b-d)i
1.7J¯2

 Chapter 5: Language Enhancements 87

Take: R←X↑Y

Y may be any array. X must be a simple integer scalar or vector.

If Y is a scalar, it is treated as a one-element array of shape (⍴,X)⍴1. The length of X
must be the same as or less than the rank of Y. If the length of X is less than the rank of
Y, the missing elements of X default to the length of the corresponding axis of Y.

R is an array of the same rank as Y (after possible extension), and of shape |X. If
X[I] (an element of X) is positive, then X[I] sub-arrays are taken from the beginning
of the Ith axis of Y. If X[I] is negative, then X[I] sub-arrays are taken from the end
of the Ith axis of Y.

If more elements are taken than exist on axis I, the extra positions in R are filled with
the fill element of Y (⊂∊⊃Y).

Examples

 5↑'ABCDEF'
ABCDE

 5↑1 2 3
1 2 3 0 0

 ¯5↑1 2 3
0 0 1 2 3

 5↑(⍳3) (⍳4) (⍳5)
 1 2 3 1 2 3 4 1 2 3 4 5 0 0 0 0 0 0

 M
1 2 3 4
5 6 7 8

 2 3↑M
1 2 3
5 6 7

 ¯1 ¯2↑M
7 8
 M3←2 3 4⍴⎕A
 1↑M3
ABCD
EFGH
IJKL
 ¯1↑M3
MNOP
QRST
UVWX

 Dyalog APL/W Version 13.0 Release Notes 88

Variant: {R}←{X}(f ⍠ B)Y

The Variant operator ⍠ specifies the value of an option to be used by its left operand
function f. An option is a named property of a function whose value in some way
affects the operation of that function.

For example, the Search and Replace operators include options named IC and Mode
which respectively determine whether or not case is ignored and in what manner the
input document is processed.

One of the set of options may be designated as the Principal option whose value may
be set using a short-cut form of syntax as described below. For example, the Principal
option for the Search and Replace operators is IC.

⍠ and ⎕OPT are synonymous though only the latter is available in the Classic Edition.

In Version 13.0 the Variant operator is used solely to specify options for the ⎕S and ⎕R
operators but it is anticipated that its use will become more widespread in later
versions.

For the operand function with right argument Y and optional left argument X, the right
operand B specifies the values of one or more options that are applicable to that
function. B may be a scalar, a 2-element vector, or a vector of 2-element vectors which
specifies values for one or more options as follows:

 If B is a 2-element vector and the first element is a character vector, it
specifies an option name in the first element and the option value (which may
be any suitable array) in the second element.

 If B is a vector of 2-element vectors, each item of B is interpreted as above.

 If B is a scalar (a rank-0 array of any depth), it specifies the value of the
Principal option

Option names and their values must be appropriate for the left operand function,
otherwise an OPTION ERROR (error code 13) will be reported.

 Chapter 5: Language Enhancements 89

The following illustrations and examples apply to functions derived from the Search
and Replace operators.

Examples of operand B

The following expression sets the IC option to 1, the Mode option to 'D' and the EOL
option to 'LF'.

 ⍠('Mode' 'D')('IC' 1)('EOL' 'LF')

The following expression sets just the EOL property to 'CR'.

 ⍠'EOL' 'CR'

The following expression sets just the Principal option (which for the Search and
Replace operators is IC) to 1.

 ⍠ 1

The order in which options are specified is typically irrelevant but if the same option is
specified more than once, the rightmost one dominates. The following expression sets
the option IC to 1:

 ⍠('IC' 0) ('IC' 1)

The Variant operator generates a derived function f⍠B and may be assigned to a name.
The derived function is effectively function f bound with the option values specified
by B.

The derived function may itself be used as a left operand to Variant to produce a
second derived function whose options are further modified by the second application
of the operator. The following sets the same options as the first example above:

 ⍠'Mode' 'D'⍠'IC' 1⍠'EOL' 'LF'

When the same option is specified more than once in this way, the outermost
(rightmost) one dominates. The following expression also sets the option IC to 1:

 ⍠'IC' 0⍠'IC' 1

 Dyalog APL/W Version 13.0 Release Notes 90

Further Examples

The following derived function returns the location of the word 'variant' within its
right argument using default values for all the options.

 f1 ← 'variant' ⎕S 0
 f1 'The variant Variant operator'
4

It may be modified to perform a case-insensitive search:

 (f1 ⍠ 1) 'The variant Variant operator'
4 12

This modified function may be named:

 f2 ← f1 ⍠ 1
 f2 'The variant Variant operator'
4 12

The modified function may itself be modified, in this case to revert to a case sensitive
search:

 f3 ← f2 ⍠ 0
 f3 'The variant Variant operator'
4

This is equivalent to:

 (f1 ⍠ 1 ⍠ 0) 'The variant Variant operator'
4

 Chapter 5: Language Enhancements 91

I-Beam: R←{X}(A⌶)Y

I-Beam is a monadic operator that provides a range of system related services.

WARNING: Although documentation is provided for I-Beam functions, any service
provided using I-Beam should be considered as “experimental” and subject to change –
without notice - from one release to the next. Any use of I-Beams in applications
should therefore be carefully isolated in cover-functions that can be adjusted if
necessary.

A is an integer that specifies the type of operation to be performed as shown in the
table below. Y is an array that supplies further information about what is to be done.

X is currently unused.

R is the result of the derived function.

A Derived Function

200 Syntax Colouring

1111 Number of Threads

1112 Parallel Execution Threshold

1113 Thread Synchronisation Mechanism

2000 Memory Manager Statistics

2010 Update DataTable

2020 Read DataTable

2100 Export to Memory

4000 Fork New Task

4001 Change User

4002 Reap Forked Tasks

4007 Signal Counts

Functions shown underlined are new in Version 13.0.

 Dyalog APL/W Version 13.0 Release Notes 92

Update DataTable: {X}2010⌶Y

This function performs a block update of an instance of the ADO.NET object
System.Data.DataTable. This object may only be updated using an explicit row-wise
loop, which is slow at the APL level. 2010⌶ implements an internal row-wise loop
which is much faster on large arrays. Furthermore, the function handles NULL values
and the conversion of internal APL data to the appropriate .Net datatype in a more
efficient manner than can be otherwise achieved. These 3 factors together mean that
the function provides a significant improvement in performance compared to calling
the row-wise programming interface directly at the APL level.

Y is a 2, 3 or 4-item array containing dtRef, Data, NullValues and Rows as
described in the table below.

The optional argument X is the Boolean vector ParseFlags as described in the table
below.

Argument Description

dtRef A reference to an instance of System.Data.DataTable.

Data A matrix with the same number of columns as the table.

NullValues An optional vector with one element per column,
containing the value which should be mapped to DBNull
when this column is written to the DataTable.

Rows Row indices (zero origin) of the rows to be updated. If not
provided, data will be appended to the DataTable.

ParseFlags A Boolean vector, where a 1 indicates that the
corresponding element of Data is a string which needs to
be passed to the Parse method of the data type of column in
question.

Example

First for comparison is shown the type of code that is required to update a DataTable
by looping,

 ⎕USING←'System' 'System.Data,system.data.dll'
 dt←⎕NEW DataTable
 ac←{dt.Columns.Add ⍺ ⍵}
 'S1' 'S2' 'I1' 'D1' ac¨String String Int32 DateTime
 S1 S2 I1 D1

 NextYear←DateTime.Now+{⎕NEW TimeSpan (4↑⍵)}¨⍳n←365
 data←(⍕¨⍳n),(n⍴'odd' 'even'),(10|⍳n),⍪NextYear
 ¯2 4↑data
 364 even 4 18-01-2011 14:03:29
 365 odd 5 19-01-2011 14:03:29

 Chapter 5: Language Enhancements 93

 ar←{(row←dt.NewRow).ItemArray←⍵ ⋄ dt.Rows.Add row}
 t←3⊃⎕ai ⋄ ar¨↓data ⋄ (3⊃⎕ai)-t
449

This result shows that this code can only insert roughly 100 rows per second (3⊃⎕AI
returns elapsed time in milliseconds), because of the need to loop on each row and
perform a noticeable amount of work each time around the loop.

2010⌶ does all the looping in compiled code:

 dt.Rows.Clear ⍝ Delete the rows inserted above

 SetDT←2010⌶
 t←3⊃⎕AI ⋄ SetDT dt data ⋄ (3⊃⎕AI)-t
4

So in this case, using 2010⌶ achieves something like 10,000 rows per second.

Using ParseFlags

Sometimes it is more convenient to handle .Net datatypes in the workspace as strings
rather than as the appropriate APL array equivalent. The System.DateTime datatype
(which by default is represented in the workspace as a 6-element numeric vector) is
one such example. 2010⌶ will accept such character data and convert it to the
appropriate .Net datatype internally.

If specified, the optional left argument X (ParseFlags) instructs the system to pass
the corresponding columns of Data to the Parse() method of the data type in
question prior to performing the update.

 NextYear←⍕¨DateTime.Now+{⎕NEW TimeSpan (4↑⍵)}¨⍳n←365

 data←(⍕¨⍳n),(n⍴'odd' 'even'),(10|⍳n),NextYear
 ¯2 4↑data
 364 even 4 18-01-2011 14:03:29
 365 odd 5 19-01-2011 14:03:29

 SetDT←2010⌶
 0 0 0 1 SetDT dt data

Handling Nulls

If applicable, NullValues is a vector with as many elements as the DataTable has
columns, indicating the value that should be converted to System.DBNull as data is
written. For example, using the same DataTable as above:

 t
 <null> odd 1 21-01-2010 14:50:19
 two even 2 22-01-2010 14:50:19
 three odd 99 23-01-2010 14:50:19

 dt.Rows.Clear ⍝ Clear the contents of dt
 SetDT dt t ('<null>' 'even' 99 '')

 Dyalog APL/W Version 13.0 Release Notes 94

Above, we have declares that the string '<null>' should be considered to be a null
value in the first column, 'even' in the second column, and the integer 99 in the
third.

Updating Selected Rows

Sometimes, you may have read a very large number of rows from a DataTable, but
only want to update a single row, or a very small number of rows. Row indices can be
provided as the fourth element of the argument to 2010⌶. If you are not using
NullValues, you can just use an empty vector as a placeholder. Continuing from the
example above, we could replace the first row in our DataTable using:

 SetDT←2010⌶
 SetDT dt (1 4⍴'one' 'odd' 1 DateTime.Now) ⍬ 0

Note

 the values must be provided as a matrix, even if you only want to update a
single row,

 row indices are zero origin (the first row has number 0).

Warning

If you are experimenting with writing to a DataTable, note that you should call
dt.Rows.Clear each time to clear the current contents of the table. Otherwise you
will end up with a very large number of rows after a while.

Read DataTable: R←{X}2020⌶Y

This function performs a block read from an instance of the ADO.NET object
System.Data.DataTable. This object may only be read using an explicit row-wise loop,
which is slow at the APL level. 2020⌶ implements an internal row-wise loop which is
much faster on large arrays. Furthermore, the function handles NULL values and the
conversion of .Net datatypes to the appropriate internal APL form in a more efficient
manner than can be otherwise achieved. These 3 factors together mean that the
function provides a significant improvement in performance compared to calling the
row-wise programming interface directly at the APL level.

Y is a scalar or a 2-item array containing dtRef, and NullValues as described in
the table below.

The optional argument X is the Boolean vector ParseFlags as described in the table
below.

The result R is the array Data as described in the table below.

 Chapter 5: Language Enhancements 95

Argument Description

dtRef A reference to an instance of System.Data.DataTable.

Data A matrix with the same number of columns as the table.

NullValues An optional vector with one element per column,
containing the value to which a DBNull in the
corresponding column of the DataTable should be mapped
in the result array Data.

ParseFlags A Boolean vector, where a 1 indicates that the
corresponding element of Data should be converted to a
string using the ToString() method of the data type of
column in question.

It is envisaged that this argument may be extended in the
future, to allow other conversions – for example converting
Dates to a floating-point format.

Example

First for comparison is shown the type of code that is required to read a DataTable by
looping:

 t←3⊃⎕AI ⋄ data1←↑(⌷dt.Rows).ItemArray ⋄ (3⊃⎕AI)-t
191

The above expression turns the dt.Rows collection into an array using ⌷, and mixes
the ItemArray properties to produce the result. Although here there is no explicit loop,
involved, there is an implicit loop required to reference each item of the collection in
succession. This operation performs at about 200 rows/sec.

2010⌶ does the looping entirely in compiled code and is significantly faster:

 GetDT←2011⌶
 t←3⊃⎕AI ⋄ data2←GetDT dt ⋄ (3⊃⎕AI)-t
25

ParseFlags Example

In the example shown above, 2020⌶ created 365 instances of System.DateTime
objects in the workspace. If we are willing to receive the timestamps in the form of
strings, we can read the data almost an order of magnitude faster:

 t←3⊃⎕AI ⋄ data3←0 0 0 1 GetDT dt ⋄ (3⊃⎕AI)-t
3

 Dyalog APL/W Version 13.0 Release Notes 96

The left argument to 2020⌶ allows you to flag columns which should be returned as
the ToString() value of each object in the flagged columns. Although the resulting
array looks identical to the original, it is not: The fourth column contains character
vectors:

 ¯2 4↑data3
 364 even 4 18-01-2011 14:03:29
 365 odd 5 19-01-2011 14:03:29

Depending on your application, you may need to process the text in the fourth column
in some way – but the overall performance will probably still be very much better than
it would be if DateTime objects were used.

Handling Nulls

Using the DataTable produced by the corresponding example shown for 2010⌶ it can
be shown that by default null values will be read back into the APL workspace as
instances of System.DBNull.

 GetDT←2020⌶
 ⎕←z←GetDT dt
 odd 1 21-01-2010 14:50:19
 two 2 22-01-2010 14:50:19
 three odd 23-01-2010 14:50:19

 (1 1⍉z).GetType
 System.DBNull System.DBNull System.DBNull

However, by supplying a NullValues argument to 2020⌶, we can request that nulls
in each column are mapped to a corresponding value of our choice; in this case,
'<null>', 'even', and 99 respectively.

 GetDT dt ('<null>' 'even' 99 '')
 <null> odd 1 21-01-2010 14:50:19
 two even 2 22-01-2010 14:50:19
 three odd 99 23-01-2010 14:50:19

 Chapter 5: Language Enhancements 97

Fork New Task: (UNIX only) R←4000⌶Y

Y must be is a simple empty vector but is ignored.

This function forks the current APL task. This means that it initiates a new separate
copy of the APL program, with exactly the same APL execution stack.

Following the execution of this function, there will be two identical APL processes
running on the machine, each with the same execution stack and set of APL objects
and values. However, none of the external interfaces and resources in the parent
process will exist in the newly forked child process.

 The function will return a result in both processes.

 In the parent process, R is the process id of the child (forked) process.

 In the child process, R is a scalar zero.

The following external interfaces and resources that may be present in the parent
process are not replicated in the child process:

 Component file ties

 Native file ties

 Mapped file associations

 Auxiliary Processors

 .NET objects

 Edit windows

 Clipboard entries

 GUI objects (all children of '.')

 I/O to the current terminal

Note that External Functions established using ⎕NA are replicated in the child process.

The function will fail with a DOMAIN ERROR if there is more than one APL thread
running.

The function will fail with a FILE ERROR 11 Resource temporarily
unavailable if an attempt is made to exceed the maximum number of processes
allowed per user.

 Dyalog APL/W Version 13.0 Release Notes 98

Change User: (UNIX only) R←4001⌶Y

Y is a character vector that specifies a valid UNIX user name. The function changes the
userid (uid) and groupid (gid) of the process to values that correspond to the specified
user name.

Note that it is only possible to change the user name if the current user name is root
(uid=0).

This call is intended to be made in the child process after a fork (4000⌶⍬) in a process
with an effective user id of root. It can however be used in any APL process with an

effective user id of root.

If the operation is successful, R is the user name specified in Y.

If the operation fails, the function generates a FILE ERROR 1 Not Owner error.

If the argument to 4001⌶ is other than a non-empty simple character vector, the
function generates a DOMAIN ERROR.

If the argument is not the name of a valid user the function generates a FILE ERROR
3 No such process.

If the argument is the same name as the current effective user, then the function returns
that name, but has no effect.

If the argument is a valid name other than the name of the effective user id of the
current process, and that effective user id is not root the function generates a FILE
ERROR 1 Not owner.

Reap Forked Tasks: (UNIX only) R←4002⌶Y

Under UNIX, when a child process terminates, it signals to its parent that it has
terminated and waits for the parent to acknowledge that signal. 4002⌶

Y must be is a simple empty vector but is ignored.

The result R is a matrix containing the list of the newly-terminated processes which
have been terminated as a result of receiving the acknowledgement, along with
information about each of those processes as described below.

R[;1] is the process ID (PID) of the terminated child

R[;2] is ¯1 if the child process terminated normally, otherwise it is the signal
number which caused the child process to terminate.

R[;3] is ¯1 if the child process terminated as the result of a signal, otherwise it is the
exit code of the child process

 Chapter 5: Language Enhancements 99

The remaining 15 columns are the contents of the rusage structure returned by the

underlying wait3() system call. Note that the two timeval structs are each
returned as a floating point number.

The current rusage structure contains:

struct rusage {
 struct timeval ru_utime; /* user time used */
 struct timeval ru_stime; /* system time used */
 long ru_maxrss; /* maximum resident set size
*/
 long ru_ixrss; /* integral shared memory
size */
 long ru_idrss; /* integral unshared data
size */
 long ru_isrss; /* integral unshared stack
size */
 long ru_minflt; /* page reclaims */
 long ru_majflt; /* page faults */
 long ru_nswap; /* swaps */
 long ru_inblock; /* block input operations */
 long ru_oublock; /* block output operations */
 long ru_msgsnd; /* messages sent */
 long ru_msgrcv; /* messages received */
 long ru_nsignals; /* signals received */
 long ru_nvcsw; /* voluntary context switches
*/
 long ru_nivcsw; /* involuntary context
switches */
};

4002⌶ may return the PID of an abnormally terminated Auxiliary Processor; APL
code should check that the list of processes that have been reaped is a superset of the
list of processes that have been started.

 Dyalog APL/W Version 13.0 Release Notes 100

Example

 ∇ tryforks;pid;fpid;rpid
[1] rpids←fpids←⍬
[2] :For i :In ⍳5
[3] fpid←4000⌶'' ⍝ fork() a process
[4] ⍝ if the child, hang around for a while
[5] :If fpid=0
[6] ⎕DL 2×i
[7] ⎕OFF
[8] :Else
[9] ⍝ if the parent, save child's pid
[10] +fpids,←fpid
[11] :EndIf
[12] :EndFor
[13]
[14] :For i :In ⍳20
[15] ⎕DL 3
[16] ⍝ get list of newly terminated child processes
[17] rpid←4002⌶''
[18] ⍝ and if not empty, make note of their pids
[19] :If 0≠⊃⍴rpid
[20] +rpids,←rpid[;1]
[21] :EndIf
[22] ⍝ if all fork()'d child processes accounted for
[23] :If fpids≡fpids∩rpids
[24] :Leave ⍝ quit
[25] :EndIf
[26] :EndFor
 ∇

 Chapter 5: Language Enhancements 101

Signal Counts: (UNIX only) R←4007⌶Y

Y must be a simple empty vector but is ignored.

The result R is an integer vector of signal counts. The length of the vector is system
dependent. On AIX 32-bit it is 63 on AIX 64-bit it is 256 but code should not rely on
the length.

Each element is a count of the number of signals that have been generated since the last
call to this function, or since the start of the process. R[1] is the number of
occurrences of signal 1 (SIGHUP), R[2] the number of occurrences of signal 2, and
so forth.

Each time the function is called it zeros the counts; it is therefore inadvisable to call it
in more than one APL thread.

Currently, only SIGHUP, SIGINT, SIGQUIT, SIGTERM and SIGWINCH are counted
and all other corresponding elements of R are 0.

Decimal Comparison Tolerance: ⎕DCT

The value of ⎕DCT determines the precision with which two numbers are judged to be
equal when the value of ⎕FR is 1287. If ⎕FR is 645, the system uses ⎕CT.

⎕DCT may be assigned any value in the range from 0 to
2.3283064365386962890625E¯10. A value of 0 ensures exact comparison. The
value in a clear workspace is 1E¯28.

For further information, see ⎕CT

Examples

 ⎕DCT←1E¯10
 1.00000000001 1.0000001 = 1
1 0

 Dyalog APL/W Version 13.0 Release Notes 102

Data Representation (Monadic): R←⎕DR Y

Monadic ⎕DR returns the type of its argument Y. The result R is an integer scalar
containing one of the following values. Note that the internal representation and data
types for character data differ between the Unicode and Classic Editions.

Value Data Type

11 1 bit Boolean

80 8 bits character

83 8 bits signed integer

160 16 bits character

163 16 bits signed integer

320 32 bits character

323 32 bits signed integer

326 32 bits Pointer

645 64 bits Floating

1287 128 bits Decimal

Unicode Edition

Value Data Type

11 1 bit Boolean

82 8 bits character

83 8 bits signed integer

163 16 bits signed integer

323 32 bits signed integer

326 32 bits Pointer

645 64 bits Floating

1287 128 bits Decimal

Classic Edition

Note that types 80, 160 and 320 and 83 and 163 and 1287 are exclusive to Dyalog
APL.

 Chapter 5: Language Enhancements 103

File Create: {R}←X ⎕FCREATE Y

Y must be a simple integer scalar or a 1 or 2 element vector containing the file tie
number followed by an optional address size. .

The file tie number must not be the tie number associated with another tied file.

The address size is an integer and may be either 32 or 64. A value of 32 causes the
internal component addresses to be represented by 32-bit values which allow a
maximum file size of 4GB. A value of 64 (the default) causes the internal component
addresses to be represented by 64-bit values which allows file sizes up to operating
system limits. Note that 32-bit component files will. See below.

Note:

 a 32-bit component file may not contain Unicode character data.

 a 64-bit component file may not be accessed by versions of Dyalog APL
prior to Version 10.1.0

X must be either

a) a simple character scalar or vector which specifies the name of the file to be
created. See User Guide for file naming conventions under UNIX and Windows.

b) a vector of length 1 or 2 whose items are:

i. a simple character scalar or vector as above.

ii. an integer scalar specifying the file size limit in bytes.

The newly created file is tied for exclusive use.

The shy result of ⎕FCREATE is the tie number of the new file.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create or tie operation, allocates, and returns as an
explicit result, the first (closest to zero) available tie number. This allows you to
simplify code. For example:

from:

 tie←1+⌈/0,⎕FNUMS ⍝ With next available number,
 file ⎕FCREATE tie ⍝ ... create file.

to:

 tie←file ⎕FCREATE 0 ⍝ Create with first available..

 Dyalog APL/W Version 13.0 Release Notes 104

Examples

 '..\BUDGET\SALES' ⎕FCREATE 2 ⍝ Windows
 '../budget/SALES.85' ⎕FCREATE 2 ⍝ UNIX

 'COSTS' 200000 ⎕FCREATE 4 ⍝ max size 200000

 'LARGE' ⎕FCREATE 5 64 ⍝ 64-bit file
 'SMALL' ⎕FCREATE 6 32 ⍝ 32-bit file

Important Note

Dyalog intends to withdraw support for 32-bit component files in future releases.

If you have any existing 32-bit component files, or applications which create and/or
use them, Dyalog recommends that you prepare for this in the following ways:

 Ensure that Dyalog is not started with the command-line option –F32. This
option sets the default component file type which is created to 32-bit.

 Ensure that no ⎕FCREATE within your applications explicitly specifies that
32-bit files are to be created.

 Make plans to convert any existing 32-bit component files to 64-bit using
⎕FCOPY. ⎕FCOPY will create a 64-bit copy even if the file being copied is
32-bit.

Note: in order to allow the use of legacy files retrieved from backups etc., Dyalog will
continue to provide a means to convert 32-bit files to supported formats for a minimum
of 10 years after direct support is withdrawn.

 Chapter 5: Language Enhancements 105

Floating-Point Representation: ⎕FR

The value of ⎕FR determines the way that floating-point operations are performed.

If ⎕FR is 645, all floating-point calculations are performed using IEEE 754 64-bit
floating-point operations and the results of these operations are represented internally

using binary645 floating-point format.

If ⎕FR is 1287, all floating-point calculations are performed using IEEE 754-2008 128-
bit decimal floating-point operations and the results of these operations are represented

internally using decimal1286 format.

Note that when you change ⎕FR, its new value only affects subsequent floating-point
operations and results. Existing floating-point values stored in the workspace remain
unchanged.

The default value of ⎕FR (its value in a clear ws) is configurable.

⎕FR has workspace scope, and may be localised. If so, like most other system
variables, it inherits its initial value from the global environment.

However: Although ⎕FR can vary, the system is not designed to allow “seamless”
modification during the running of an application and the dynamic alteration of is not
recommended. Strange effects may occur. For example, the type of a constant
contained in a line of code (in a function or class), will depend on the value of ⎕FR
when the function is fixed. Thus, it would be possible for the first line of code above to
return 0, if it is in the body of a function. If the function was edited and while
suspended and execution is resumed, the result would become 1. Also note:

 ⎕FR←1287
 x←1÷3

 ⎕FR←645
 x=1÷3
1

The decimal number has 17 more 3’s. Using the tolerance which applies to binary
floats (type 645), the numbers are equal. However, the “reverse” experiment yields 0,
as tolerance is much narrower in the decimal universe:

 ⎕FR←645
 x←1÷3

 ⎕FR←1287
 x=1÷3
0

5 http://en.wikipedia.org/wiki/Double_precision_floating-point_format
6 http://en.wikipedia.org/wiki/Decimal128_floating-point_format

 Dyalog APL/W Version 13.0 Release Notes 106

Since ⎕FR can vary, it will be possible for a single workspace to contain floating-point
values of both types (existing variables are not converted when ⎕FR is changed). For
example, an array that has just been brought into the workspace from external storage
may have a different type from ⎕FR in the current namespace. Conversion (if
necessary) will only take place when a new floating-point array is generated as the
result of “a calculation”. The result of a computation returning a floating-point result
will not depend on the type of the arrays involved in the expression: ⎕FR at the time
when a computation is performed decides the result type, alone.

Structural functions generally do NOT change the type, for example:

 ⎕FR←1287
 x←1.1 2.2 3.3

 ⎕FR←645
 ⎕DR x
1287
 ⎕DR 2↑x
1287

128-bit decimal numbers not only have greater precision (roughly 34 decimal digits);
they also have significantly larger range – from ¯1E6145 to 1E6145. Loss of precision
is accepted on conversion from 645 to 1287, but the magnitude of a number may make
the conversion impossible, in which case a DOMAIN ERROR is issued:

 ⎕FR←1287
 x←1E1000

 ⎕FR←645 ⋄ x+0
DOMAIN ERROR

When experimenting with ⎕FR it is important to note that numeric constants entered
into the Session are evaluated (and assigned a data type) before the line is actually
executed. This means that constants are evaluated according to the value of ⎕FR that
pertained before the line was entered. For example:

 ⎕FR←645
 ⎕FR
645
 ⎕FR←1287 ⋄ ⎕DR 0.1
645
 ⎕DR 0.1
1287

WARNING: The use of COMPLEX numbers when ⎕FR is 1287 is not recommended,
because:

 any 128-bit decimal array into which a complex number is inserted or
appended will be forced in its entirety into complex representation, potentially
losing precision

 all comparisons are done using ⎕DCT when ⎕FR is 1287, and this is
equivalent to 0 for complex numbers.

 Chapter 5: Language Enhancements 107

Name Association: {R}←{X}⎕NA Y

⎕NA provides access from APL to compiled functions within a Dynamic Link

Library (DLL). A DLL is a collection of functions typically written in C (or C++)
each of which may take arguments and return a result.

Instructional examples using ⎕NA can be found in supplied workspace: QUADNA.DWS.

The DLL may be part of the standard operating system software, purchased from a
third party supplier, or one that you have written yourself.

The right argument Y is a character vector that identifies the name and syntax of the
function to be associated. The left argument X is a character vector that contains the
name to be associated with the external function. If the ⎕NA is successful, a function
(name class 3) is established in the active workspace with name X. If X is omitted, the
name of the external function itself is used for the association.

The shy result R is a character vector containing the name of the external function that
was fixed.

For example, math.dll might be a library of mathematical functions containing a

function divide. To associate the APL name div with this external function:

 'div' ⎕NA 'F8 math|divide I4 I4'

where F8 and I4, specify the types of the result and arguments expected by divide.

The association has the effect of establishing a new function: div in the workspace,
which when called, passes its arguments to divide and returns the result.

)fns
div
 div 10 4
2.5

 Dyalog APL/W Version 13.0 Release Notes 108

Type Declaration

In a compiled language such as C, the types of arguments and results of functions must
be declared explicitly. Typically, these types will be published with the documentation
that accompanies the DLL. For example, function divide might be declared:

double divide(int32_t, int32_t);

which means that it expects two long (4-byte) integer arguments and returns a double
(8-byte) floating point result. Notice the correspondence between the C declaration and
the right argument of ⎕NA:

C: double divide (int32_t, int32_t);

APL:'div' ⎕NA 'F8 math|divide I4 I4 '

It is imperative that care be taken when coding type declarations. A DLL cannot check
types of data passed from APL. A wrong type declaration will lead to erroneous results
or may even cause the workspace to become corrupted and crash.

The full syntax for the right argument of ⎕NA is:

[result] library|function [arg1] [arg2] ...

Note that functions associated with DLLs are never dyadic. All arguments are passed
as items of a (possibly nested) vector on the right of the function.

Locating the DLL

The DLL may be specified using a full pathname, file extension, and function type.

Pathname: APL uses the LoadLibrary() system function under Windows and

dlopen() under UNIX and LINUX to load the DLL. If a full or relative pathname is
omitted, these functions search standard operating system directories in a particular
order. For further details, see the operating system documentation about these
functions.

Alternatively, a full or relative pathname may be supplied in the usual way:

 ⎕NA'... c:\mydir\mydll|foo ...'

 Chapter 5: Language Enhancements 109

Errors: If the specified DLL (or a dependent DLL) fails to load it will generate:

FILE ERROR 1 No such file or directory

If the DLL loads successfully, but the specified library function is not accessible, it will
generate:

VALUE ERROR

File Extension: Under Windows, if the file extension is omitted, .dll is assumed. Note
that some DLLs are in fact .exe files, and in this case the extension must be specified
explicitly:

 ⎕NA'... mydll.exe|foo ...'

Example

 ⎕NA'... mydll.exe.P32|foo ...' ⍝ 32 bit Pascal

Call by Ordinal Number

Under Windows, a DLL may associate an ordinal number with any of its functions.
This number may then be used to call the function as an alternative to calling it by
name. Using ⎕NA to call by ordinal number uses the same syntax but with the function
name replaced with its ordinal number. For example:

 ⎕NA'... mydll|57 ...'

Multi-Threading

Appending the ‘&’ character to the function name causes the external function to be run
in its own system thread. For example:

 ⎕NA'... mydll|foo& ...'

This means that other APL threads can run concurrently with the one that is calling the
⎕NA function.

 Dyalog APL/W Version 13.0 Release Notes 110

Data Type Coding Scheme

The type coding scheme introduced above is of the form:

 [direction] [special] type [width] [array]

The options are summarised in the following table and their functions detailed below.

Description Symbol Meaning

Direction < Pointer to array input to DLL function.

> Pointer to array output from DLL function

= Pointer to input/output array.

Special 0 Null-terminated string.

Byte-counted string

Type I int

U unsigned int

C char

T Classic Edition char: translated to/from ANSI
Unicode Edition char

F float

D decimal

J complex

P uintptr-t (equivalent to U4 on 32-bit Versions and
U8 on 64-bit Versions)

A APL array

Z APL array with header (as passed to a TCP/IP
socket)

PP Pocket pointer This provides support for direct
access to data in the workspace.

Width 1 1-byte

2 2-byte

4 4-byte

8 8-byte

16 16-byte (128-bit)

Array [n] Array of length n elements

[] Array, length determined at call-time

Structure {...} Structure.

 Chapter 5: Language Enhancements 111

In the Classic Edition, C specifies untranslated character, whereas T specifies that the
character data will be translated to/from ⎕AV.

In the Unicode Edition, C and T are identical (no translation of character data is
performed) except that for C the default width is 1 and for T the default width is "wide"
(2 bytes under Windows, 4 bytes under UNIX).

The use of T with default width is recommended to ensure portability between
Editions.

Direction

C functions accept data arguments either by value or by address. This distinction is
indicated by the presence of a ‘*’ or ‘[]’ in the argument declaration:

 int num1; // value of num1 passed.

 int *num2; // Address of num2 passed.

 int num3[]; // Address of num3 passed.

An argument (or result) of an external function of type pointer, must be matched in the
⎕NA call by a declaration starting with one of the characters: <, >, or =.

In C, when an address is passed, the corresponding value can be used as either an input
or an output variable. An output variable means that the C function overwrites values
at the supplied address. Because APL is a call-by-value language, and doesn’t have
pointer types, we accommodate this mechanism by distinguishing output variables, and
having them returned explicitly as part of the result of the call.

This means that where the C function indicates a pointer type, we must code this as
starting with one of the characters: <, > or =.

< indicates that the address of the argument will be used by C as an input variable and
values at the address will not be over-written.

> indicates that C will use the address as an output variable. In this case, APL must
allocate an output array over which C can write values. After the call, this array will
be included in the nested result of the call to the external function.

= indicates that C will use the address for both input and output. In this case, APL
duplicates the argument array into an output buffer whose address is passed to the
external function. As in the case of an output only array, the newly modified copy
will be included in the nested result of the call to the external function.

Examples

 <I2 Pointer to 2-byte integer - input to external function

 >C Pointer to character output from external function.

 =T Pointer to character input to and output from function.

 =A Pointer to APL array modified by function.

 Dyalog APL/W Version 13.0 Release Notes 112

Special

In C it is common to represent character strings as null-terminated or byte counted
arrays. These special data types are indicated by inserting the symbol 0 (null-
terminated) or # (byte counted) between the direction indicator (<, >, =) and the type
(T or C) specification. For example, a pointer to a null-terminated input character
string is coded as <0T[], and an output one coded as >0T[].

Note that while appending the array specifier ‘[]’ is formally correct, because the

presence of the special qualifier (0 or #) implies an array, the ‘[]’ may be omitted:

<0T, >0T, =#C, etc.

Note also that the 0 and # specifiers may be used with data of all types (excluding A, Z
and PP) and widths. For example, in the Classic Edition, <0U2 may be useful for
dealing with Unicode.

Type

The data type of the argument is represented by one of the symbols i, u, c, t, f, a,
which may be specified in lower or upper case:

 Type Description

I Integer The value is interpreted as a 2s complement signed integer.

U Unsigned
integer

The value is interpreted as an unsigned integer.

C Character The value is interpreted as a character.

In the Unicode Edition, the value maps directly onto a Unicode code
point.

In the Classic Edition, the value is interpreted as an index into ⎕AV.
This means that ⎕AV positions map onto corresponding ANSI
positions.

For example, with ⎕IO=0:
⎕AV[35] = 's', maps to ANSI[35] = ’

 Chapter 5: Language Enhancements 113

 Type Description

T Translated
character

The value is interpreted as a character.

In the Unicode Edition, the value maps directly onto a Unicode code
point.

In the Classic Edition, the value is translated using standard Dyalog
⎕AV to ANSI translation. This means that ⎕AV characters map onto
corresponding ANSI characters.

For example, with ⎕IO=0:

⎕AV[35] = 's', maps to ANSI[115] = ’s’.

F Float The value is interpreted as an IEEE 754-2008 binary64 floating
point number.

D Decimal The value is interpreted as an IEEE 754-2008 decimal128 floating
point number (DPD format).

J Complex

P uintptr-t This is equivalent to U4 on 32-bit versions and U8 on 64-bit
Versions.

A APL array A pointer to the whole array (including header information) is
passed. This type is used to communicate with DLL functions which
have been written specifically to work with Dyalog APL. See the
User Guide section on Writing Auxiliary Processors. Note that type
A is always passed as a pointer, so is of the form <A, =A or >A.

Z APL array
with
header

This is the same format as is used to transmit APL arrays over
TCP/IP Sockets.

PP Pocket
Pointer

Provides direct access to data in the workspace.

 Dyalog APL/W Version 13.0 Release Notes 114

Width

The type specifier may be followed by the width of the value in bytes. For example:

 I4 4-byte signed integer.
 U2 2-byte unsigned integer.
 F8 8-byte floating point number.
 F4 4-byte floating point number.
 D16 16-byte decimal floating-point number

Type Possible values for Width Default value for Width

I 1, 2, 4, 8 4

U 1, 2, 4, 8 4

C 1,2,4 1

T 1,2,4 wide character(see below)

F 4, 8 8

D 16 16
J 16 16

P Not applicable

A Not applicable

Z Not applicable

PP Not applicable

In the Unicode Edition, the default width is the width of a wide character according to
the convention of the host operating system. This translates to T2 under Windows and
T4 under UNIX or Linux.

Note that 32-bit versions can support 64-bit integer arguments, but not 64-bit integer
results.

Examples

 I2 16-bit integer
 <I4 Pointer to input 4-byte integer
 U Default width unsigned integer.
 =F4 Pointer to input/output 4-byte floating point number.

 Chapter 5: Language Enhancements 115

Arrays

Arrays are specified by following the basic data type with [n] or [], where n
indicates the number of elements in the array. In the C declaration, the number of
elements in an array may be specified explicitly at compile time, or determined
dynamically at runtime. In the latter case, the size of the array is often passed along
with the array, in a separate argument. In this case, n, the number of elements is
omitted from the specification. Note that C deals only in scalars and rank 1 (vector)
arrays.

int vec[10]; // explicit vector length.
unsigned size, list[]; // undetermined length.

could be coded as:

I[10] vector of 10 ints.
U U[] unsigned integer followed by an array of unsigned integers.

Confusion sometimes arises over a difference in the declaration syntax between C and
⎕NA. In C, an argument declaration may be given to receive a pointer to either a single
scalar item, or to the first element of an array. This is because in C, the address of an
array is deemed to be the address of its first element.

void foo (char *string);

char ch = 'a', ptr = "abc";

foo(&ch); // call with address of scalar.
foo(ptr); // call with address of array.

However, from APL’s point of view, these two cases are distinct and if the function is

to be called with the address of (pointer to) a scalar, it must be declared: '<T'.
Otherwise, to be called with the address of an array, it must be declared: '<T[]'.
Note that it is perfectly acceptable in such circumstances to define more than one name
association to the same DLL function specifying different argument types:

 'FooScalar'⎕NA'mydll|foo <T' ⋄ FooScalar'a'
 'FooVector'⎕NA'mydll|foo <T[]' ⋄ FooVector'abc'

 Dyalog APL/W Version 13.0 Release Notes 116

Structures

Arbitrary data structures, which are akin to nested arrays, are specified using the
symbols {}. For example, the code {F8 I2} indicates a structure comprised of an 8-
byte float followed by a 2-byte int. Furthermore, the code <{F8 I2}[3] means an
input pointer to an array of 3 such structures.

For example, this structure might be defined in C thus:

typedef struct
{
 double f;
 short i;
 } mystruct;

A function defined to receive a count followed by an input pointer to an array of such
structures:

void foo(unsigned count, mystruct *str);

An appropriate ⎕NA declaration would be:

 ⎕NA'mydll.foo U <{F8 I2}[]'

A call on the function with two arguments - a count followed by a vector of structures:

 foo 4,⊂(1.4 3)(5.9 1)(6.5 2)(0 0)

Notice that for the above call, APL converts the two Boolean (0 0) elements to an 8-
byte float and a 2-byte int, respectively.

 Chapter 5: Language Enhancements 117

Specifying Pointers Explicitly

⎕NA syntax enables APL to pass arguments to DLL functions by value or address as
appropriate. For example if a function requires an integer followed by a pointer to an
integer:

void fun(int valu, int *addr);

You might declare and call it:

 ⎕NA'mydll|fun I <I' ⋄ fun 42 42

The interpreter passes the value of the first argument and the address of the second
one.

Two common cases occur where it is necessary to pass a pointer explicitly. The first is
if the DLL function requires a null pointer, and the second is where you want to pass
on a pointer which itself is a result from a DLL function.

In both cases, the pointer argument should be coded as P. This causes APL to pass the
pointer unchanged, by value, to the DLL function.

In the previous example, to pass a null pointer, (or one returned from another DLL
function), you must code a separate ⎕NA definition.

 'fun_null'⎕NA'mydll|fun I P' ⋄ fun_null 42 0

Now APL passes the value of the second argument (in this case 0 - the null pointer),
rather than its address.

Note that by using P, which is 4-byte for 32-bit processes and 8-byte for 64-bit
processes, you will ensure that the code will run unchanged under both 32-bit and 63-
bit Versions of Dyalog APL.

 Dyalog APL/W Version 13.0 Release Notes 118

Using a Function

A DLL function may or may not return a result, and may take zero or more arguments.
This syntax is reflected in the coding of the right argument of ⎕NA. Notice that the
corresponding associated APL function is niladic or monadic (never dyadic), and that it
always returns a vector result - a null one if there is no output from the function. See
Result Vector section below. Examples of the various combinations are:

DLL function Non-result-returning:

⎕NA 'mydll|fn1' ⍝ Niladic
⎕NA 'mydll|fn2 <0T' ⍝ Monadic - 1-element arg
⎕NA 'mydll|fn3 =0T <0T' ⍝ Monadic - 2-element arg

DLL function Result-returning:

⎕NA 'I4 mydll|fn4' ⍝ Niladic
⎕NA 'I4 mydll|fn5 F8' ⍝ Monadic - 1-element arg
⎕NA 'I4 mydll|fn6 >I4[] <0T'⍝ Monadic - 2-element arg

When the external function is called, the number of elements in the argument must
match the number defined in the ⎕NA definition. Using the example functions defined
above:

 fn1 ⍝ Niladic Function.
 fn2, ⊂'Single String' ⍝ 1-element arg
 fn3 'This' 'That' ⍝ 2-element arg

Note in the second example, that you must enclose the argument string to produce a
single item (nested) array in order to match the declaration. Dyalog converts the type
of a numeric argument if necessary, so for example in fn5 defined above, a Boolean
value would be converted to double floating point (F8) prior to being passed to the
DLL function.

 Chapter 5: Language Enhancements 119

Pointer Arguments

When passing pointer arguments there are three cases to consider.

< Input pointer: In this case you must supply the data array itself as argument to the
function. A pointer to its first element is then passed to the DLL function.

 fn2 ⊂'hello'

> Output pointer: Here, you must supply the number of elements that the output
will need in order for APL to allocate memory to accommodate the resulting array.

 fn6 10 'world' ⍝ 1st arg needs space for 10 ints.

Note that if you were to reserve fewer elements than the DLL function actually used,
the DLL function would write beyond the end of the reserved array and may cause the
interpreter to crash with a System Error (syserr 999 on Windows or SIGSEGV on
Unix).

= Input/Output: As with the input-only case, a pointer to the first element of the
argument is passed to the DLL function. The DLL function then overwrites some or
all of the elements of the array, and the new value is passed back as part of the
result of the call. As with the output pointer case, if the input array were too short,
so that the DLL wrote beyond the end of the array, the interpreter would almost
certainly crash.

 fn3 '.....' 'hello'

 Dyalog APL/W Version 13.0 Release Notes 120

Result Vector

In APL, a function cannot overwrite its arguments. This means that any output from a
DLL function must be returned as part of the explicit result, and this includes output
via ‘output’ or ‘input/output’ pointer arguments.

The general form of the result from calling a DLL function is a nested vector. The first
item of the result is the defined explicit result of the external function, and subsequent
items are implicit results from output, or input/output pointer arguments.

The length of the result vector is therefore: 1 (if the function was declared to return an
explicit result) + the number of output or input/output arguments.

 ⎕NA Declaration Result Output

Arguments

Result

Length

 mydll|fn1 0 0

 mydll|fn2 <0T 0 0 0

 mydll|fn3 =0T <0T 0 1 0 1

I4 mydll|fn4 1 1

I4 mydll|fn5 F8 1 0 1

I4 mydll|fn6 >I4[] <0T 1 1 0 2

As a convenience, if the result would otherwise be a 1-item vector, it is disclosed.
Using the third example above:

 ⍴fn3 '.....' 'abc'
5

fn3 has no explicit result; its first argument is input/output pointer; and its second
argument is input pointer. Therefore as the length of the result would be 1, it has been
disclosed.

 Chapter 5: Language Enhancements 121

ANSI /Unicode Versions of Library Calls

Under Windows, most library functions that take character arguments, or return
character results have two forms: one Unicode (Wide) and one ANSI. For example, a
function such as MessageBox(), has two forms MessageBoxA() and

MessageBoxW(). The A stands for ANSI (1-byte) characters, and the W for wide (2-
byte Unicode) characters.

It is essential that you associate the form of the library function that is appropriate for
the Dyalog Edition you are using, i.e. MessageBoxA() for the Classic Edition, but

MessageBoxW() for the Unicode Edition.

To simplify writing portable code for both Editions, you may specify the character *
instead of A or W at the end of a function name. This will be replaced by A in the
Classic Edition and W in the Unicode Edition.

The default name of the associated function (if no left argument is given to ⎕NA), will
be without the trailing letter (MessageBox).

Type Definitions (typedefs)

The C language encourages the assignment of defined names to primitive and complex
data types using its #define and typedef mechanisms. Using such abstractions
enables the C programmer to write code that will be portable across many operating
systems and hardware platforms.

Windows software uses many such names and Microsoft documentation will normally
refer to the type of function arguments using defined names such as HANDLE or

LPSTR rather than their equivalent C primitive types: int or char*.

It is beyond the scope of this manual to list all the Microsoft definitions and their C
primitive equivalents, and indeed, DLLs from sources other than Microsoft may well
employ their own distinct naming conventions.

In general, you should consult the documentation that accompanies the DLL in order to
convert typedefs to primitive C types and thence to ⎕NA declarations. The
documentation may well refer you to the ‘include’ files which are part of the Software
Development Kit, and in which the types are defined.

The following table of some commonly encountered Windows typedefs and their ⎕NA
equivalents might prove useful.

 Dyalog APL/W Version 13.0 Release Notes 122

Windows typedef ⎕NA equivalent

HWND P

HANDLE P

GLOBALHANDLE P

LOCALHANDLE P

DWORD U4

WORD U2

BYTE U1

LPSTR =0T[] (note 1)

LPCSTR <0T[] (note 2)

WPARAM U

LPARAM U4

LRESULT I4

BOOL I

UINT U

ULONG U4

ATOM U2

HDC P

HBITMAP P

HBRUSH P

HFONT P

HICON P

HMENU P

HPALETTE P

HMETAFILE P

HMODULE P

HINSTANCE P

COLORREF {U1[4]}

POINT {I I}

POINTS {I2 I2}

RECT {I I I I}

CHAR T or C

 Chapter 5: Language Enhancements 123

Notes

1. LPSTR is a pointer to a null-terminated string. The definition does not indicate

whether this is input or output, so the safest coding would be =0T[] (providing the
vector you supply for input is long enough to accommodate the result). You may be
able to improve simplicity or performance if the documentation indicates that the
pointer is ‘input only’ (<0T[]) or ‘output only’ (>0T[]). See Direction above.

2. LPCSTR is a pointer to a constant null-terminated string and therefore coding

<0T[] is safe.

3. Note that the use of type T with default width ensures portability of code between
Classic and Unicode Editions. In the Classic Edition, T (with no width specifier)
implies 1-byte characters which are translated between ⎕AV and ASCII, while In
the Unicode Edition, T (with no width specifier) implies 2-byte (Unicode)
characters.

Dyalog32.dll or Dyalog64.dll

Included with Dyalog APL are utility DLLs called dyalog32.dll and dyalog64.dll.
These DLLs contain two functions: MEMCPY and STRNCPY.

MEMCPY

MEMCPY is an extremely versatile function used for moving arbitrary data between
memory buffers.

Its C definition is:

void *MEMCPY(// copy memory
void *to, // target address
void *fm, // source address
size_t size // number of bytes to copy

);

MEMCPY copies size bytes starting from source address fm, to destination address

to. The source and destination areas should not overlap; if they do the behaviour is
undefined and the result is the first argument.

MEMCPY’s versatility stems from being able to associate to it using many different type
declarations.

 Dyalog APL/W Version 13.0 Release Notes 124

Example

Suppose a global buffer (at address: addr) contains (numb) double floating point
numbers. To copy these to an APL array, we could define the association:

 'doubles' ⎕NA 'dyalog32|MEMCPY >F8[] I4 U4'
 doubles numb addr (numb×8)

Notice that:

As the first argument to doubles is an output argument, we must supply the number
of elements to reserve for the output data.

MEMCPY is defined to take the number of bytes to copy, so we must multiply the
number of elements by the element size in bytes.

Example

Suppose that a database application requires that we construct a record in global
memory prior to writing it to file. The record structure might look like this:

typedef struct {
int empno; // employee number.

 float salary; // salary.
 char name[20]; // name.
 } person;

Then, having previously allocated memory (addr) to receive the record, we can
define:

 'prec' ⎕NA 'dyalog32|MEMCPY I4 <{P F4 T[20]} U4'
 prec addr(99 12345.60 'Charlie Brown
')(4+4+20)

STRNCPY

STRNCPY is used to copy null-terminated strings between memory buffers.

Its C definition is:

void *STRNCPY(// copy null-terminated string
char *to, // target address
char *fm, // source address
size_t size // MAX number of chars to copy

);

STRNCPY copies a maximum of size characters from the null-terminated source

string at address fm, to the destination address to. If the source and destination strings
overlap, the result is the first argument.

 Chapter 5: Language Enhancements 125

If the source string is shorter than size, null characters are appended to the
destination string.

If the source string (including its terminating null) is longer than size, only size
characters are copied and the resulting destination string is not null-terminated

Example

Suppose that a database application returns a pointer (addr) to a structure that
contains two pointers to (max 20-char) null-terminated strings.

typedef struct { // null-terminated strings:
 char *first; // first name (max 19 chars + 1 null).
 char *last; // last name. (max 19 chars + 1 null).
} name;

To copy the names from the structure:

 'get'⎕NA'dyalog32|STRNCPY >0T[] P U4'
 get 20 addr 20
Charlie
 get 20 (addr+4) 20
Brown

Note that on a 64-bit Version, ⎕FR 1287

To copy data from the workspace into an already allocated (new) structure:

 'put'⎕NA'dyalog32|STRNCPY I4 <0T[] U4'
 put new 'Bo' 20
 put (new+4) 'Peep' 20

Notice in this example that you must ensure that names no longer than 19 characters
are passed to put. More than 19 characters would not leave STRNCPY enough space
to include the trailing null, which would probably cause the application to fail.

 Dyalog APL/W Version 13.0 Release Notes 126

Examples

The following examples all use functions from the Microsoft Windows user32.dll.

This DLL should be located in a standard Windows directory, so you should not
normally need to give the full path name of the library. However if trying these
examples results in the error message ‘FILE ERROR 1 No such file or directory’, you
must locate the DLL and supply the full path name (and possibly extension).

Example 1

The Windows function "GetCaretBlinkTime" retrieves the caret blink rate. It
takes no arguments and returns an unsigned int and is declared as follows:

UINT GetCaretBlinkTime(void);

The following statements would provide access to this routine through an APL
function of the same name.

 ⎕NA 'U user32|GetCaretBlinkTime'
 GetCaretBlinkTime
530

The following statement would achieve the same thing, but using an APL function
called BLINK.

 'BLINK' ⎕NA 'U user32|GetCaretBlinkTime'
 BLINK
530

Example 2

The Windows function "SetCaretBlinkTime" sets the caret blink rate. It takes a
single unsigned int argument, does not return a result and is declared as follows:

void SetCaretBlinkTime(UINT);

The following statements would provide access to this routine through an APL
function of the same name:

 ⎕NA 'user32|SetCaretBlinkTime U'
 SetCaretBlinkTime 1000

 Chapter 5: Language Enhancements 127

Example 3

The Windows function "MessageBox" displays a standard dialog box on the screen
and awaits a response from the user. It takes 4 arguments. The first is the window
handle for the window that owns the message box. This is declared as an unsigned int.
The second and third arguments are both pointers to null-terminated strings containing
the message to be displayed in the Message Box and the caption to be used in the
window title bar. The 4th argument is an unsigned int that specifies the Message Box
type. The result is an int which indicates which of the buttons in the message box the
user has pressed. The function is declared as follows:

int MessageBox(HWND, LPCSTR, LPCSTR, UINT);

The following statements provide access to this routine through an APL function of the
same name. Note that the 2nd and 3rd arguments are both coded as input pointers to
type T null-terminated character arrays which ensures portability between Editions.

 ⎕NA 'I user32|MessageBox* P <0T <0T U'

The following statement displays a Message Box with a stop sign icon together with 2
push buttons labelled OK and Cancel (this is specified by the value 19).

 MessageBox 0 'Message' 'Title' 19

The function works equally well in the Unicode Edition because the <0T specification
is portable.

 MessageBox 0 'Το Μήνυμα' 'Ο Τίτλο̋' 19

Note that a simpler, portable (and safer) method for displaying a Message Box is to use
Dyalog APL’s primitive MsgBox object.

Example 4

The Windows function "FindWindow" obtains the window handle of a window
which has a given character string in its title bar. The function takes two arguments.
The first is a pointer to a null-terminated character string that specifies the window's
class name. However, if you are not interested in the class name, this argument should
be a NULL pointer. The second is a pointer to a character string that specifies the title
that identifies the window in question. This is an example of a case described above
where two instances of the function must be defined to cater for the two different types
of argument. However, in practice this function is most often used without specifying
the class name. The function is declared as follows:

HWND FindWindow(LPCSTR, LPCSTR);

 Dyalog APL/W Version 13.0 Release Notes 128

The following statement associates the APL function FW with the second variant of the
FindWindow call, where the class name is specified as a NULL pointer. To indicate
that APL is to pass the value of the NULL pointer, rather than its address, we need to
code this argument as I4.

 'FW' ⎕NA 'P user32|FindWindow* I4 <0T'

To obtain the handle of the window entitled "CLEAR WS - Dyalog APL/W":

 ⎕←HNDL←FW 0 'CLEAR WS - Dyalog APL/W'
59245156

Example 5

The Windows function "GetWindowText" retrieves the caption displayed in a
window's title bar. It takes 3 arguments. The first is an unsigned int containing the
window handle. The second is a pointer to a buffer to receive the caption as a null-
terminated character string. This is an example of an output array. The third argument
is an int which specifies the maximum number of characters to be copied into the
output buffer. The function returns an int containing the actual number of characters
copied into the buffer and is declared as follows:

int GetWindowText(HWND, LPSTR, int);

The following associates the "GetWindowText" DLL function with an APL function

of the same name. Note that the second argument is coded as ">0T" indicating that it
is a pointer to a character output array.

 ⎕NA 'I user32|GetWindowText* P >0T I'

Now change the Session caption using)WSID :

)WSID MYWS
was CLEAR WS

Then retrieve the new caption (max length 255) using window handle HNDL from the
previous example:

]display GetWindowText HNDL 255 255
.→-------------------------.
| .→------------------. |
| 19 |MYWS - Dyalog APL/W| |
| '-------------------' |
'∊-------------------------'

 Chapter 5: Language Enhancements 129

There are three points to note. Firstly, the number 255 is supplied as the second
argument. This instructs APL to allocate a buffer large enough for a 255-element
character vector into which the DLL routine will write. Secondly, the result of the
APL function is a nested vector of 2 elements. The first element is the result of the
DLL function. The second element is the output character array.

Finally, notice that although we reserved space for 255 elements, the result reflects the
length of the actual text (19).

An alternative way of coding and using this function is to treat the second argument as
an input/output array.

e.g.

 ⎕NA 'I User32|GetWindowText* P =0T I'

]display GetWindowText HNDL (255⍴' ') 255
.→-------------------------.
| .→------------------. |
| 19 |MYWS - Dyalog APL/W| |
| '-------------------' |
'∊-------------------------'

In this case, the second argument is coded as =0T, so when the function is called an
array of the appropriate size must be supplied. This method uses more space in the
workspace, although for small arrays (as in this case) the real impact of doing so is
negligible.

Example 6

The function "GetCharWidth" returns the width of each character in a given range
Its first argument is a device context (handle). Its second and third arguments specify
font positions (start and end). The third argument is the resulting integer vector that
contains the character widths (this is an example of an output array). The function
returns a Boolean value to indicate success or failure. The function is defined as
follows. Note that this function is provided in the library: gdi32.dll.

BOOL GetCharWidth(HDC, UINT, UINT, int FAR*);

 Dyalog APL/W Version 13.0 Release Notes 130

The following statements provide access to this routine through an APL function of the
same name:

 ⎕NA 'U4 gdi32|GetCharWidth* P U U >I[]'

 'P'⎕WC'Printer'

]display GetCharWidth ('P' ⎕WG 'Handle') 65 67 3
.→-------------.
| .→-------. |
| 1 |50 50 50| |
| '~-------' |
'∊-------------'

Note: 'P'⎕WG'Handle' returns a handle This is represented as a number. The
number will be in the range (0 - 2*32] on a 32-bit Version and (0 - 2*64] on a 64-bit
Version. These can be passed to a P type parameter. Older Versions used a 32-bit
signed integer.

Example 7

The following example from the supplied workspace: QUADNA.DWS illustrates several
techniques which are important in advanced ⎕NA programming. Function
DllVersion returns the major and minor version number for a given DLL.

In advanced DLL programming, it is often necessary to administer memory outside
APL’s workspace. In general, the procedure for such use is:

1. Allocate global memory.
2. Lock the memory.
3. Copy any DLL input information from workspace into memory.
4. Call the DLL function.
5. Copy any DLL output information from memory to workspace.
6. Unlock the memory.
7. Free the memory.

Notice that steps 1 and 7 and steps 2 and 6 complement each other. That is, if you
allocate global system memory, you must free it after you have finished using it. If you
continue to use global memory without freeing it, your system will gradually run out of
resources. Similarly, if you lock memory (which you must do before using it), then you
should unlock it before freeing it. Although on some versions of Windows, freeing the
memory will include unlocking it, in the interests of good style, maintaining the
symmetry is probably a good thing.

 Chapter 5: Language Enhancements 131

 ∇ version←DllVersion file;Alloc;Free;Lock;Unlock;Size
 ;Info;Value;Copy;size;hndl;addr;buff;ok
[1]
[2] 'Alloc'⎕NA'P kernel32|GlobalAlloc U4 U4'
[3] 'Free'⎕NA'P kernel32|GlobalFree P'
[4] 'Lock'⎕NA'P kernel32|GlobalLock P'
[5] 'Unlock'⎕NA'U4 kernel32|GlobalUnlock P'
[6]
[7] 'Size'⎕NA'U4 version|GetFileVersionInfoSize* <0T >U4'
[8] 'Info'⎕NA'U4 version|GetFileVersionInfo*<0T U4 U4 P'
[9] 'Value'⎕NA'U4 version|VerQueryValue* P <0T >P >U4'
[10]
[11] 'Copy'⎕NA'dyalog64|MEMCPY >U4[] P P'
[12]
[13] :If ×size←⊃Size file 0 ⍝ Size of info
[14] :AndIf ×hndl←Alloc 0 size ⍝ Alloc memory
[15] :If ×addr←Lock hndl ⍝ Lock memory
[16] :If ×Info file 0 size addr ⍝ Version info
[17] ok buff size←Value addr'\' 0 0 ⍝ Version value
[18] :If ok
[19] buff←Copy(size÷4)buff size ⍝ Copy info
[20] version←(2/2*16)⊤⊃2↓buff ⍝ Split version
[21] :EndIf
[22] :EndIf
[23] ok←Unlock hndl ⍝ Unlock memory
[24] :EndIf
[25] ok←Free hndl ⍝ Free memory
[26] :EndIf
 ∇
Lines [2-11] associate APL function names with the DLL functions that will be used.

Lines [2-5] associate functions to administer global memory.

Lines [7-9] associate functions to extract version information from a DLL.

Line[11] associates Copy with MEMCPY function from dyalog64.dll.

Lines [13-26] call the DLL functions.

Line [13] requests the size of buffer required to receive version information for the
DLL. A size of 0 will be returned if the DLL does not contain version information.

Notice that care is taken to balance memory allocation and release:

On line [14], the :If clause is taken only if the global memory allocation is successful,
in which case (and only then) a corresponding Free is called on line [25].

Unlock on line[23] is called if and only if the call to Lock on line [15] succeeds.

A result is returned from the function only if all the calls are successful Otherwise, the
calling environment will sustain a VALUE ERROR.

 Dyalog APL/W Version 13.0 Release Notes 132

More Examples

⎕NA'I4 advapi32 |RegCloseKey P'
⎕NA'I4 advapi32 |RegCreateKeyEx* P <0T U4 <0T U4 U4 P >P >U4'
⎕NA'I4 advapi32 |RegEnumValue* P U4 >0T =U4 =U4 >U4 >0T =U4'
⎕NA'I4 advapi32 |RegOpenKey* P <0T >P'
⎕NA'I4 advapi32 |RegOpenKeyEx* P <0T U4 U4 >P'
⎕NA'I4 advapi32 |RegQueryValueEx* P <0T =U4 >U4 >0T =U4'
⎕NA'I4 advapi32 |RegSetValueEx* P <0T =U4 U4 <0T U4'
⎕NA'P dyalog32 |STRNCPY P P P'
⎕NA'P dyalog32 |STRNCPYA P P P'
⎕NA'P dyalog32 |STRNCPYW P P P'
⎕NA'P dyalog32 |MEMCPY P P P'
⎕NA'I4 gdi32 |AddFontResource* <0T'
⎕NA'I4 gdi32 |BitBlt P I4 I4 I4 I4 P I4 I4 U4'
⎕NA'U4 gdi32 |GetPixel P I4 I4'
⎕NA'P gdi32 |GetStockObject I4'
⎕NA'I4 gdi32 |RemoveFontResource* <0T'
⎕NA'U4 gdi32 |SetPixel P I4 I4 U4'
⎕NA' glu32 |gluPerspective F8 F8 F8 F8'
⎕NA'I4 kernel32 |CopyFile* <0T <0T I4'
⎕NA'P kernel32 |GetEnvironmentStrings'
⎕NA'U4 kernel32 |GetLastError'
⎕NA'U4 kernel32 |GetTempPath* U4 >0T'
⎕NA'P kernel32 |GetProcessHeap'
⎕NA'I4 kernel32 |GlobalMemoryStatusEx ={U4 U4 U8 U8 U8 U8 U8 U8}'
⎕NA'P kernel32 |HeapAlloc P U4 P'
⎕NA'I4 kernel32 |HeapFree P U4 P'
⎕NA' opengl32 |glClearColor F4 F4 F4 F4'
⎕NA' opengl32 |glClearDepth F8'
⎕NA' opengl32 |glEnable U4'
⎕NA' opengl32 |glMatrixMode U4'
⎕NA'I4 user32 |ClientToScreen P ={I4 I4}'
⎕NA'P user32 |FindWindow* <0T <0T'
⎕NA'I4 user32 |ShowWindow P I4'
⎕NA'I2 user32 |GetAsyncKeyState I4'
⎕NA'P user32 |GetDC P'
⎕NA'I4 User32 |GetDialogBaseUnits'
⎕NA'P user32 |GetFocus'
⎕NA'U4 user32 |GetSysColor I4'
⎕NA'I4 user32 |GetSystemMetrics I4'
⎕NA'I4 user2 |InvalidateRgn P P I4'
⎕NA'I4 user32 |MessageBox* P <0T <0T U4'
⎕NA'I4 user32 |ReleaseDC P P'
⎕NA'P user32 |SendMessage* P U4 P P'
⎕NA'P user32 |SetFocus P'
⎕NA'I4 user32 |WinHelp* P <0T U4 P'
⎕NA'I4 winnm |sndPlaySound <0T U4'

 Chapter 5: Language Enhancements 133

Variant: {R}←{X}(f ⎕OPT B)Y

⎕OPT is synonymous with the Variant Operator symbol ⍠ and is the only form
available in the Classic Edition.

See Variant Operator.

Profile Application: R←⎕PROFILE Y
⎕PROFILE facilitates the profiling of either CPU consumption or elapsed time for a
workspace. It does so by retaining time measurements collected for APL
functions/operators and function/operator lines. ⎕PROFILE is used to both control the
state of profiling and retrieve the collected profiling data.

Y specifies the action to perform and any options for that action, if applicable. Y is
case-insensitive.

Use Description

state←⎕PROFILE 'start' {timer} Turn profiling on using the
specified timer or resume if
profiling was stopped

state←⎕PROFILE 'stop' Suspend the collection of
profiling data

state←⎕PROFILE 'clear' Turn profiling off, if active,
and discard any collected
profiling data

state←⎕PROFILE 'calibrate' Calibrate the profiling timer

state←⎕PROFILE 'state' Query profiling state

data←⎕PROFILE 'data' Retrieve profiling data in flat
form

data←⎕PROFILE 'tree' Retrieve profiling data in tree
form

 Dyalog APL/W Version 13.0 Release Notes 134

⎕PROFILE has 2 states:

 active – the profiler is running and profiling data is being collected.

 inactive – the profiler is not running.

For most actions, the result of ⎕PROFILE is its current state and contains:

[1] character vector indicating the ⎕PROFILE state having one of the values
'active' or 'inactive'

[2] character vector indicating the timer being used having one of the values
'CPU' or 'elapsed'

[3] call time bias in milliseconds. This is the amount of time, in
milliseconds, that is consumed for the system to take a time
measurement.

[4] timer granularity in milliseconds, or 0 if the granularity cannot be
accurately determined. This is the resolution of the timer being used.

state←⎕PROFILE 'start' {timer}

Turn profiling on; timer is an optional case-independent character vector containing
'CPU' or 'elapsed'. If omitted, it defaults to 'CPU'.

The first time a particular timer is chosen, ⎕PROFILE will spend 1000 milliseconds (1
second) to approximate the call time bias and granularity for that timer.

 ⎕PROFILE 'start'
 active CPU 0.0001037499999 0.0001037499999

state←⎕PROFILE 'stop'

Suspends the collection of profiling data.

 ⎕PROFILE 'stop'
 inactive CPU 0.0001037499999 0.0001037499999

state←⎕PROFILE 'clear'

Clears any collected profiling data and, if profiling is active, places profiling in an
inactive state.

 ⎕PROFILE 'clear'
 inactive 0 0

 Chapter 5: Language Enhancements 135

state←⎕PROFILE 'calibrate'

Causes ⎕PROFILE to perform a 1000 millisecond calibration to approximate the call
time bias and granularity for the current timer. Note, a timer must have been previously
selected by using ⎕PROFILE 'start'.

⎕PROFILE will retain the lesser of the current timer values compared to the new
values computed by the calibration. The rationale for this is to use the smallest possible
values of which we can be certain.

 ⎕PROFILE'calibrate'
 active CPU 0.0001037499997 0.0001037499997

state←⎕PROFILE 'state'

Returns the current profiling state.

)clear
clear ws
 ⎕PROFILE 'state'
 inactive 0 0

 ⎕PROFILE 'start' 'CPU'
 active CPU 0.0001037499997 0.0001037499997
 ⎕PROFILE 'state'
 active CPU 0.0001037499997 0.0001037499997

data←⎕PROFILE 'data'

Retrieves the collected profiling data. Specifying 'data' returns:

[;1] function name

[;2] function line number or ⍬ for a whole function entry

[;3] number of times the line or function was executed

[;4] accumulated time (ms) for this entry exclusive of items called by this
entry

[;5] accumulated time (ms) for this entry inclusive of items called by this
entry

[;6] number of times the timer function was called for the exclusive time

[;7] number of times the timer function was called for the inclusive time

 Dyalog APL/W Version 13.0 Release Notes 136

Example: (numbers have been truncated for formatting)

 ⎕PROFILE 'data'
#.foo 1 1.04406 39347.64945 503 4080803¶
#.foo 1 1 0.12488 0.124887 1 1¶
#.foo 2 100 0.58851 39347.193900 200 4080500¶
#.foo 3 100 0.21340 0.213406 100 100¶
#.NS1.goo 100 99.44404 39346.6053 50300 4080300¶
#.NS1.goo 1 100 0.61679 0.616793 100 100¶
#.NS1.goo 2 10000 67.80292 39314.9642 20000 4050000¶
#.NS1.goo 3 10000 19.60274 19.6027 10000 10000

data←⎕PROFILE 'tree'

Retrieve the collected profiling data in tree format:

[;1] depth level

[;2] function name

[;3] function line number or ⍬ for a whole function entry

[;4] number of times the line or function was executed

[;5] accumulated time (ms) for this entry exclusive of items called by this
entry

[;6] accumulated time (ms) for this entry inclusive of items called by this
entry

[;7] number of times the timer function was called for the exclusive time

[;8] number of times the timer function was called for the inclusive time

Example:

 ⎕PROFILE 'tree'
0 #.foo 1 1.04406 39347.64945 503 4080803
1 #.foo 1 1 0.12488 0.12488 1 1

1 #.foo 2 100 0.58851 39347.19390 200 4080500
2 #.NS1.goo 100 99.44404 39346.60538 50300 4080300
3 #.NS1.goo 1 100 0.61679 0.61679 100 100

3 #.NS1.goo 2 10000 67.80292 39314.96426 20000 4050000
4 #.NS2.moo 10000 39247.16133 39247.16133 4030000 4030000
5 #.NS2.moo 1 10000 39.28315 39.28315 10000 10000

5 #.NS2.moo 2 1000000 36430.65236 36430.65236 1000000 1000000
5 #.NS2.moo 3 1000000 1645.36214 1645.36214 1000000 1000000
3 #.NS1.goo 3 10000 19.60274 19.60274 10000 10000

1 #.foo 3 100 0.21340 0.21340 100 100

Note that rows with an even depth level in column [;1] represent function summary
entries and odd depth level rows are function line entries. Recursive functions will
generate separate rows for each level of recursion.

 Chapter 5: Language Enhancements 137

Notes

Profile Data Entry Types

The results of ⎕PROFILE 'data' and ⎕PROFILE 'tree' have two types of
entries; function summary entries and function line entries. Function summary
entries contain ⍬ in the line number column, whereas function line entries
contain the line number. Dynamic functions line entries begin with 0 as they do
not have a header line like traditional functions. The timer data and timer call
counts in function summary entries represent the aggregate of the function line
entries plus any time spent that cannot be directly attributed to a function line
entry. This could include time spent during function initialisation, etc.

Example:

 #.foo 1 1.04406 39347.649450 503 4080803
 #.foo 1 1 0.12488 0.124887 1 1
 #.foo 2 100 0.58851 39347.193900 200 4080500
 #.foo 3 100 0.21340 0.213406 100 100

Timer Data Persistence

The profiling data collected is stored outside the workspace and will not impact
workspace availability. The data is cleared upon workspace load, clear
workspace, ⎕PROFILE 'clear', or interpreter sign off.

The PROFILE User Command

]PROFILE is a utility which implements a high-level interface to ⎕PROFILE
and provides reporting and analysis tools that act upon the profiling data. For
further information, see Tuning Applications using the Profile User Command.

Using ⎕PROFILE Directly

If you choose to use ⎕PROFILE directly, the following guidelines and
information may be of use to you.

Note: Running your application with ⎕PROFILE turned on incurs a significant
processing overhead and will slow your application down.

Decide which timer to use

⎕PROFILE supports profiling of either CPU or elapsed time. CPU time is
generally of more interest in profiling application performance.

 Dyalog APL/W Version 13.0 Release Notes 138

Simple Profiling

To get a quick handle on the top CPU time consumers in an application, use
the following procedure:

 Make sure the application runs long enough to collect enough data to
overcome the timer granularity – a reasonable rule of thumb is to make
sure the application runs for at least (4000×4⊃⎕PROFILE 'state')
milliseconds.

 Turn profiling on with ⎕PROFILE 'start' 'CPU'

 Run your application.

 Pause the profiler with ⎕PROFILE 'stop'

 Examine the profiling data from ⎕PROFILE 'data' or
⎕PROFILE 'tree' for entries that consume large amounts of
resource.

This should identify any items that take more than 10% of the run time.

To find finer time consumers, or to focus on elapsed time rather than CPU
time, take the following additional steps prior to running the profiler:

 Turn off as much hardware as possible. This would include
peripherals, network connections, etc.

 Turn off as many other tasks and processes as possible. These include
anti-virus software, firewalls, internet services, background tasks.

 Raise the priority on the Dyalog APL task to higher than normal, but in
general avoid giving it the highest priority.

 Run the profiler as described above.

Doing this should help identify items that take more than 1% of the run time.

Advanced Profiling

The timing data collected by ⎕PROFILE is not adjusted for the timer’s call time
bias; in other words, the times reported by ⎕PROFILE include the time spent
calling the timer function. One effect of this can be to make “cheap” lines that
are called many times seem to consume more resource. If you desire more
accurate profiling measurements, or if your application takes a short amount of
time to run, you will probably want to adjust for the timer call time bias. To do
so, subtract from the timing data the timer’s call time bias multiplied by the
number of times the timer was called.

Example:

 CallTimeBias←3⊃⎕PROFILE 'state'
 RawTimes←⎕PROFILE 'data'
 Adjusted←RawTimes[;4 5]-RawTimes[;6 7]×CallTimeBias

 Chapter 5: Language Enhancements 139

Space Indicator: R←⎕RSI

R is a vector of refs to the spaces from which functions in the state indicator were
called (⍴⎕RSI←→⍴⎕NSI←→⍴⎕SI).

⎕RSI and ⎕NSI are identical except that ⎕RSI returns refs to the spaces whereas
⎕NSI returns their names. ie. ⎕NSI←→⍕¨⎕RSI.

Note that ⎕RSI returns refs to the spaces from which functions were called not those
in which they are currently running.

Example

)OBJECTS
XX YY

 ⎕VR 'YY.FOO'
 ∇ R←FOO
[1] R←⎕SE.GOO
 ∇
 ⎕VR'⎕SE.GOO'
 ∇ R←GOO
[1] R←⎕SI,[1.5]⎕NSI
 ∇

)CS XX
#.XX
]display #.YY.FOO
┌→───────────┐
↓ ┌→──┐ │
│ │GOO│ #.YY │
│ └───┘ │
│ ┌→──┐ │
│ │FOO│ #.XX │
│ └───┘ │
└∊───────────┘

 Dyalog APL/W Version 13.0 Release Notes 140

 141

Appendices: PCRE Specifications
PCRE (Perl Compatible Regular Expressions) is an open source library used by the ⎕R and ⎕S system
operators. The regular expression syntax which the library supports is not unique to APL nor is it an
integral part of the language. Its documentation is reproduced verbatim in these appendices. There are
two named sections: pcrepattern, which describes the full syntax and semantics; and prcresyntax, a
quick reference summary.

Appendix A – Search Pattern syntax
PCREPATTERN(3) PCREPATTERN(3)

NAME
 PCRE - Perl-compatible regular expressions

PCRE REGULAR EXPRESSION DETAILS

 The syntax and semantics of the regular expressions that are supported
 by PCRE are described in detail below. There is a quick-reference syn-
 tax summary in the pcresyntax page. PCRE tries to match Perl syntax and
 semantics as closely as it can. PCRE also supports some alternative
 regular expression syntax (which does not conflict with the Perl syn-
 tax) in order to provide some compatibility with regular expressions in
 Python, .NET, and Oniguruma.

 Perl's regular expressions are described in its own documentation, and
 regular expressions in general are covered in a number of books, some
 of which have copious examples. Jeffrey Friedl's "Mastering Regular
 Expressions", published by O'Reilly, covers regular expressions in
 great detail. This description of PCRE's regular expressions is
 intended as reference material.

 The original operation of PCRE was on strings of one-byte characters.
 However, there is now also support for UTF-8 character strings. To use
 this, PCRE must be built to include UTF-8 support, and you must call
 pcre_compile() or pcre_compile2() with the PCRE_UTF8 option. There is
 also a special sequence that can be given at the start of a pattern:

 (*UTF8)

 Starting a pattern with this sequence is equivalent to setting the
 PCRE_UTF8 option. This feature is not Perl-compatible. How setting
 UTF-8 mode affects pattern matching is mentioned in several places
 below. There is also a summary of UTF-8 features in the section on
 UTF-8 support in the main pcre page.

 The remainder of this document discusses the patterns that are sup-
 ported by PCRE when its main matching function, pcre_exec(), is used.
 From release 6.0, PCRE offers a second matching function,
 pcre_dfa_exec(), which matches using a different algorithm that is not
 Perl-compatible. Some of the features discussed below are not available
 when pcre_dfa_exec() is used. The advantages and disadvantages of the
 alternative function, and how it differs from the normal function, are
 discussed in the pcrematching page.

 Dyalog APL/W Version 13.0 Release Notes 142

NEWLINE CONVENTIONS

 PCRE supports five different conventions for indicating line breaks in
 strings: a single CR (carriage return) character, a single LF (line-
 feed) character, the two-character sequence CRLF, any of the three pre-
 ceding, or any Unicode newline sequence. The pcreapi page has further
 discussion about newlines, and shows how to set the newline convention
 in the options arguments for the compiling and matching functions.

 It is also possible to specify a newline convention by starting a pat-
 tern string with one of the following five sequences:

 (*CR) carriage return
 (*LF) linefeed
 (*CRLF) carriage return, followed by linefeed
 (*ANYCRLF) any of the three above
 (*ANY) all Unicode newline sequences

 These override the default and the options given to pcre_compile() or
 pcre_compile2(). For example, on a Unix system where LF is the default
 newline sequence, the pattern

 (*CR)a.b

 changes the convention to CR. That pattern matches "a\nb" because LF is
 no longer a newline. Note that these special settings, which are not
 Perl-compatible, are recognized only at the very start of a pattern,
 and that they must be in upper case. If more than one of them is
 present, the last one is used.

 The newline convention does not affect what the \R escape sequence
 matches. By default, this is any Unicode newline sequence, for Perl
 compatibility. However, this can be changed; see the description of \R
 in the section entitled "Newline sequences" below. A change of \R set-
 ting can be combined with a change of newline convention.

CHARACTERS AND METACHARACTERS

 A regular expression is a pattern that is matched against a subject
 string from left to right. Most characters stand for themselves in a
 pattern, and match the corresponding characters in the subject. As a
 trivial example, the pattern

 The quick brown fox

 matches a portion of a subject string that is identical to itself. When
 caseless matching is specified (the PCRE_CASELESS option), letters are
 matched independently of case. In UTF-8 mode, PCRE always understands
 the concept of case for characters whose values are less than 128, so
 caseless matching is always possible. For characters with higher val-
 ues, the concept of case is supported if PCRE is compiled with Unicode
 property support, but not otherwise. If you want to use caseless
 matching for characters 128 and above, you must ensure that PCRE is
 compiled with Unicode property support as well as with UTF-8 support.

 The power of regular expressions comes from the ability to include
 alternatives and repetitions in the pattern. These are encoded in the

 Appendices: PCRE Specifications 143

 pattern by the use of metacharacters, which do not stand for themselves
 but instead are interpreted in some special way.

 There are two different sets of metacharacters: those that are recog-
 nized anywhere in the pattern except within square brackets, and those
 that are recognized within square brackets. Outside square brackets,
 the metacharacters are as follows:

 \ general escape character with several uses
 ^ assert start of string (or line, in multiline mode)
 $ assert end of string (or line, in multiline mode)
 . match any character except newline (by default)
 [start character class definition
 | start of alternative branch
 (start subpattern
) end subpattern
 ? extends the meaning of (
 also 0 or 1 quantifier
 also quantifier minimizer
 * 0 or more quantifier
 + 1 or more quantifier
 also "possessive quantifier"
 { start min/max quantifier

 Part of a pattern that is in square brackets is called a "character
 class". In a character class the only metacharacters are:

 \ general escape character
 ^ negate the class, but only if the first character
 - indicates character range
 [POSIX character class (only if followed by POSIX
 syntax)
] terminates the character class

 The following sections describe the use of each of the metacharacters.

BACKSLASH

 The backslash character has several uses. Firstly, if it is followed by
 a non-alphanumeric character, it takes away any special meaning that
 character may have. This use of backslash as an escape character
 applies both inside and outside character classes.

 For example, if you want to match a * character, you write * in the
 pattern. This escaping action applies whether or not the following
 character would otherwise be interpreted as a metacharacter, so it is
 always safe to precede a non-alphanumeric with backslash to specify
 that it stands for itself. In particular, if you want to match a back-
 slash, you write \\.

 If a pattern is compiled with the PCRE_EXTENDED option, whitespace in
 the pattern (other than in a character class) and characters between a
 # outside a character class and the next newline are ignored. An escap-
 ing backslash can be used to include a whitespace or # character as
 part of the pattern.

 If you want to remove the special meaning from a sequence of charac-
 ters, you can do so by putting them between \Q and \E. This is differ-
 ent from Perl in that $ and @ are handled as literals in \Q...\E

 Dyalog APL/W Version 13.0 Release Notes 144

 sequences in PCRE, whereas in Perl, $ and @ cause variable interpola-
 tion. Note the following examples:

 Pattern PCRE matches Perl matches

 \Qabc$xyz\E abc$xyz abc followed by the
 contents of $xyz
 \Qabc\$xyz\E abc\$xyz abc\$xyz
 \Qabc\E\$\Qxyz\E abc$xyz abc$xyz

 The \Q...\E sequence is recognized both inside and outside character
 classes.

 Non-printing characters

 A second use of backslash provides a way of encoding non-printing char-
 acters in patterns in a visible manner. There is no restriction on the
 appearance of non-printing characters, apart from the binary zero that
 terminates a pattern, but when a pattern is being prepared by text
 editing, it is often easier to use one of the following escape
 sequences than the binary character it represents:

 \a alarm, that is, the BEL character (hex 07)
 \cx "control-x", where x is any character
 \e escape (hex 1B)
 \f formfeed (hex 0C)
 \n linefeed (hex 0A)
 \r carriage return (hex 0D)
 \t tab (hex 09)
 \ddd character with octal code ddd, or back reference
 \xhh character with hex code hh
 \x{hhh..} character with hex code hhh..

 The precise effect of \cx is as follows: if x is a lower case letter,
 it is converted to upper case. Then bit 6 of the character (hex 40) is
 inverted. Thus \cz becomes hex 1A, but \c{ becomes hex 3B, while \c;
 becomes hex 7B.

 After \x, from zero to two hexadecimal digits are read (letters can be
 in upper or lower case). Any number of hexadecimal digits may appear
 between \x{ and }, but the value of the character code must be less
 than 256 in non-UTF-8 mode, and less than 2**31 in UTF-8 mode. That is,
 the maximum value in hexadecimal is 7FFFFFFF. Note that this is bigger
 than the largest Unicode code point, which is 10FFFF.

 If characters other than hexadecimal digits appear between \x{ and },
 or if there is no terminating }, this form of escape is not recognized.
 Instead, the initial \x will be interpreted as a basic hexadecimal
 escape, with no following digits, giving a character whose value is
 zero.

 Characters whose value is less than 256 can be defined by either of the
 two syntaxes for \x. There is no difference in the way they are han-
 dled. For example, \xdc is exactly the same as \x{dc}.

 After \0 up to two further octal digits are read. If there are fewer
 than two digits, just those that are present are used. Thus the
 sequence \0\x\07 specifies two binary zeros followed by a BEL character
 (code value 7). Make sure you supply two digits after the initial zero
 if the pattern character that follows is itself an octal digit.

 Appendices: PCRE Specifications 145

 The handling of a backslash followed by a digit other than 0 is compli-
 cated. Outside a character class, PCRE reads it and any following dig-
 its as a decimal number. If the number is less than 10, or if there
 have been at least that many previous capturing left parentheses in the
 expression, the entire sequence is taken as a back reference. A
 description of how this works is given later, following the discussion
 of parenthesized subpatterns.

 Inside a character class, or if the decimal number is greater than 9
 and there have not been that many capturing subpatterns, PCRE re-reads
 up to three octal digits following the backslash, and uses them to gen-
 erate a data character. Any subsequent digits stand for themselves. In
 non-UTF-8 mode, the value of a character specified in octal must be
 less than \400. In UTF-8 mode, values up to \777 are permitted. For
 example:

 \040 is another way of writing a space
 \40 is the same, provided there are fewer than 40
 previous capturing subpatterns
 \7 is always a back reference
 \11 might be a back reference, or another way of
 writing a tab
 \011 is always a tab
 \0113 is a tab followed by the character "3"
 \113 might be a back reference, otherwise the
 character with octal code 113
 \377 might be a back reference, otherwise
 the byte consisting entirely of 1 bits
 \81 is either a back reference, or a binary zero
 followed by the two characters "8" and "1"

 Note that octal values of 100 or greater must not be introduced by a
 leading zero, because no more than three octal digits are ever read.

 All the sequences that define a single character value can be used both
 inside and outside character classes. In addition, inside a character
 class, the sequence \b is interpreted as the backspace character (hex
 08), and the sequences \R and \X are interpreted as the characters "R"
 and "X", respectively. Outside a character class, these sequences have
 different meanings (see below).

 Absolute and relative back references

 The sequence \g followed by an unsigned or a negative number, option-
 ally enclosed in braces, is an absolute or relative back reference. A
 named back reference can be coded as \g{name}. Back references are dis-
 cussed later, following the discussion of parenthesized subpatterns.

 Absolute and relative subroutine calls

 For compatibility with Oniguruma, the non-Perl syntax \g followed by a
 name or a number enclosed either in angle brackets or single quotes, is
 an alternative syntax for referencing a subpattern as a "subroutine".
 Details are discussed later. Note that \g{...} (Perl syntax) and
 \g<...> (Oniguruma syntax) are not synonymous. The former is a back
 reference; the latter is a subroutine call.

 Generic character types

 Dyalog APL/W Version 13.0 Release Notes 146

 Another use of backslash is for specifying generic character types. The
 following are always recognized:

 \d any decimal digit
 \D any character that is not a decimal digit
 \h any horizontal whitespace character
 \H any character that is not a horizontal whitespace character
 \s any whitespace character
 \S any character that is not a whitespace character
 \v any vertical whitespace character
 \V any character that is not a vertical whitespace character
 \w any "word" character
 \W any "non-word" character

 Each pair of escape sequences partitions the complete set of characters
 into two disjoint sets. Any given character matches one, and only one,
 of each pair.

 These character type sequences can appear both inside and outside char-
 acter classes. They each match one character of the appropriate type.
 If the current matching point is at the end of the subject string, all
 of them fail, since there is no character to match.

 For compatibility with Perl, \s does not match the VT character (code
 11). This makes it different from the the POSIX "space" class. The \s
 characters are HT (9), LF (10), FF (12), CR (13), and space (32). If
 "use locale;" is included in a Perl script, \s may match the VT charac-
 ter. In PCRE, it never does.

 In UTF-8 mode, characters with values greater than 128 never match \d,
 \s, or \w, and always match \D, \S, and \W. This is true even when Uni-
 code character property support is available. These sequences retain
 their original meanings from before UTF-8 support was available, mainly
 for efficiency reasons. Note that this also affects \b, because it is
 defined in terms of \w and \W.

 The sequences \h, \H, \v, and \V are Perl 5.10 features. In contrast to
 the other sequences, these do match certain high-valued codepoints in
 UTF-8 mode. The horizontal space characters are:

 U+0009 Horizontal tab
 U+0020 Space
 U+00A0 Non-break space
 U+1680 Ogham space mark
 U+180E Mongolian vowel separator
 U+2000 En quad
 U+2001 Em quad
 U+2002 En space
 U+2003 Em space
 U+2004 Three-per-em space
 U+2005 Four-per-em space
 U+2006 Six-per-em space
 U+2007 Figure space
 U+2008 Punctuation space
 U+2009 Thin space
 U+200A Hair space
 U+202F Narrow no-break space
 U+205F Medium mathematical space
 U+3000 Ideographic space

 Appendices: PCRE Specifications 147

 The vertical space characters are:

 U+000A Linefeed
 U+000B Vertical tab
 U+000C Formfeed
 U+000D Carriage return
 U+0085 Next line
 U+2028 Line separator
 U+2029 Paragraph separator

 A "word" character is an underscore or any character less than 256 that
 is a letter or digit. The definition of letters and digits is con-
 trolled by PCRE's low-valued character tables, and may vary if locale-
 specific matching is taking place (see "Locale support" in the pcreapi
 page). For example, in a French locale such as "fr_FR" in Unix-like
 systems, or "french" in Windows, some character codes greater than 128
 are used for accented letters, and these are matched by \w. The use of
 locales with Unicode is discouraged.

 Newline sequences

 Outside a character class, by default, the escape sequence \R matches
 any Unicode newline sequence. This is a Perl 5.10 feature. In non-UTF-8
 mode \R is equivalent to the following:

 (?>\r\n|\n|\x0b|\f|\r|\x85)

 This is an example of an "atomic group", details of which are given
 below. This particular group matches either the two-character sequence
 CR followed by LF, or one of the single characters LF (linefeed,
 U+000A), VT (vertical tab, U+000B), FF (formfeed, U+000C), CR (carriage
 return, U+000D), or NEL (next line, U+0085). The two-character sequence
 is treated as a single unit that cannot be split.

 In UTF-8 mode, two additional characters whose codepoints are greater
 than 255 are added: LS (line separator, U+2028) and PS (paragraph sepa-
 rator, U+2029). Unicode character property support is not needed for
 these characters to be recognized.

 It is possible to restrict \R to match only CR, LF, or CRLF (instead of
 the complete set of Unicode line endings) by setting the option
 PCRE_BSR_ANYCRLF either at compile time or when the pattern is matched.
 (BSR is an abbrevation for "backslash R".) This can be made the default
 when PCRE is built; if this is the case, the other behaviour can be
 requested via the PCRE_BSR_UNICODE option. It is also possible to
 specify these settings by starting a pattern string with one of the
 following sequences:

 (*BSR_ANYCRLF) CR, LF, or CRLF only
 (*BSR_UNICODE) any Unicode newline sequence

 These override the default and the options given to pcre_compile() or
 pcre_compile2(), but they can be overridden by options given to
 pcre_exec() or pcre_dfa_exec(). Note that these special settings, which
 are not Perl-compatible, are recognized only at the very start of a
 pattern, and that they must be in upper case. If more than one of them
 is present, the last one is used. They can be combined with a change of
 newline convention, for example, a pattern can start with:

 (*ANY)(*BSR_ANYCRLF)

 Dyalog APL/W Version 13.0 Release Notes 148

 Inside a character class, \R matches the letter "R".

 Unicode character properties

 When PCRE is built with Unicode character property support, three addi-
 tional escape sequences that match characters with specific properties
 are available. When not in UTF-8 mode, these sequences are of course
 limited to testing characters whose codepoints are less than 256, but
 they do work in this mode. The extra escape sequences are:

 \p{xx} a character with the xx property
 \P{xx} a character without the xx property
 \X an extended Unicode sequence

 The property names represented by xx above are limited to the Unicode
 script names, the general category properties, and "Any", which matches
 any character (including newline). Other properties such as "InMusical-
 Symbols" are not currently supported by PCRE. Note that \P{Any} does
 not match any characters, so always causes a match failure.

 Sets of Unicode characters are defined as belonging to certain scripts.
 A character from one of these sets can be matched using a script name.
 For example:

 \p{Greek}
 \P{Han}

 Those that are not part of an identified script are lumped together as
 "Common". The current list of scripts is:

 Arabic, Armenian, Balinese, Bengali, Bopomofo, Braille, Buginese,
 Buhid, Canadian_Aboriginal, Cherokee, Common, Coptic, Cuneiform,
 Cypriot, Cyrillic, Deseret, Devanagari, Ethiopic, Georgian, Glagolitic,
 Gothic, Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo, Hebrew, Hira-
 gana, Inherited, Kannada, Katakana, Kharoshthi, Khmer, Lao, Latin,
 Limbu, Linear_B, Malayalam, Mongolian, Myanmar, New_Tai_Lue, Nko,
 Ogham, Old_Italic, Old_Persian, Oriya, Osmanya, Phags_Pa, Phoenician,
 Runic, Shavian, Sinhala, Syloti_Nagri, Syriac, Tagalog, Tagbanwa,
 Tai_Le, Tamil, Telugu, Thaana, Thai, Tibetan, Tifinagh, Ugaritic, Yi.

 Each character has exactly one general category property, specified by
 a two-letter abbreviation. For compatibility with Perl, negation can be
 specified by including a circumflex between the opening brace and the
 property name. For example, \p{^Lu} is the same as \P{Lu}.

 If only one letter is specified with \p or \P, it includes all the gen-
 eral category properties that start with that letter. In this case, in
 the absence of negation, the curly brackets in the escape sequence are
 optional; these two examples have the same effect:

 \p{L}
 \pL

 The following general category property codes are supported:

 C Other
 Cc Control
 Cf Format
 Cn Unassigned

 Appendices: PCRE Specifications 149

 Co Private use
 Cs Surrogate

 L Letter
 Ll Lower case letter
 Lm Modifier letter
 Lo Other letter
 Lt Title case letter
 Lu Upper case letter

 M Mark
 Mc Spacing mark
 Me Enclosing mark
 Mn Non-spacing mark

 N Number
 Nd Decimal number
 Nl Letter number
 No Other number

 P Punctuation
 Pc Connector punctuation
 Pd Dash punctuation
 Pe Close punctuation
 Pf Final punctuation
 Pi Initial punctuation
 Po Other punctuation
 Ps Open punctuation

 S Symbol
 Sc Currency symbol
 Sk Modifier symbol
 Sm Mathematical symbol
 So Other symbol

 Z Separator
 Zl Line separator
 Zp Paragraph separator
 Zs Space separator

 The special property L& is also supported: it matches a character that
 has the Lu, Ll, or Lt property, in other words, a letter that is not
 classified as a modifier or "other".

 The Cs (Surrogate) property applies only to characters in the range
 U+D800 to U+DFFF. Such characters are not valid in UTF-8 strings (see
 RFC 3629) and so cannot be tested by PCRE, unless UTF-8 validity check-
 ing has been turned off (see the discussion of PCRE_NO_UTF8_CHECK in
 the pcreapi page). Perl does not support the Cs property.

 The long synonyms for property names that Perl supports (such as
 \p{Letter}) are not supported by PCRE, nor is it permitted to prefix
 any of these properties with "Is".

 No character that is in the Unicode table has the Cn (unassigned) prop-
 erty. Instead, this property is assumed for any code point that is not
 in the Unicode table.

 Specifying caseless matching does not affect these escape sequences.
 For example, \p{Lu} always matches only upper case letters.

 Dyalog APL/W Version 13.0 Release Notes 150

 The \X escape matches any number of Unicode characters that form an
 extended Unicode sequence. \X is equivalent to

 (?>\PM\pM*)

 That is, it matches a character without the "mark" property, followed
 by zero or more characters with the "mark" property, and treats the
 sequence as an atomic group (see below). Characters with the "mark"
 property are typically accents that affect the preceding character.
 None of them have codepoints less than 256, so in non-UTF-8 mode \X
 matches any one character.

 Matching characters by Unicode property is not fast, because PCRE has
 to search a structure that contains data for over fifteen thousand
 characters. That is why the traditional escape sequences such as \d and
 \w do not use Unicode properties in PCRE.

 Resetting the match start

 The escape sequence \K, which is a Perl 5.10 feature, causes any previ-
 ously matched characters not to be included in the final matched
 sequence. For example, the pattern:

 foo\Kbar

 matches "foobar", but reports that it has matched "bar". This feature
 is similar to a lookbehind assertion (described below). However, in
 this case, the part of the subject before the real match does not have
 to be of fixed length, as lookbehind assertions do. The use of \K does
 not interfere with the setting of captured substrings. For example,
 when the pattern

 (foo)\Kbar

 matches "foobar", the first substring is still set to "foo".

 Simple assertions

 The final use of backslash is for certain simple assertions. An asser-
 tion specifies a condition that has to be met at a particular point in
 a match, without consuming any characters from the subject string. The
 use of subpatterns for more complicated assertions is described below.
 The backslashed assertions are:

 \b matches at a word boundary
 \B matches when not at a word boundary
 \A matches at the start of the subject
 \Z matches at the end of the subject
 also matches before a newline at the end of the subject
 \z matches only at the end of the subject
 \G matches at the first matching position in the subject

 These assertions may not appear in character classes (but note that \b
 has a different meaning, namely the backspace character, inside a char-
 acter class).

 A word boundary is a position in the subject string where the current
 character and the previous character do not both match \w or \W (i.e.
 one matches \w and the other matches \W), or the start or end of the

 Appendices: PCRE Specifications 151

 string if the first or last character matches \w, respectively. Neither
 PCRE nor Perl has a separte "start of word" or "end of word" metase-
 quence. However, whatever follows \b normally determines which it is.
 For example, the fragment \ba matches "a" at the start of a word.

 The \A, \Z, and \z assertions differ from the traditional circumflex
 and dollar (described in the next section) in that they only ever match
 at the very start and end of the subject string, whatever options are
 set. Thus, they are independent of multiline mode. These three asser-
 tions are not affected by the PCRE_NOTBOL or PCRE_NOTEOL options, which
 affect only the behaviour of the circumflex and dollar metacharacters.
 However, if the startoffset argument of pcre_exec() is non-zero, indi-
 cating that matching is to start at a point other than the beginning of
 the subject, \A can never match. The difference between \Z and \z is
 that \Z matches before a newline at the end of the string as well as at
 the very end, whereas \z matches only at the end.

 The \G assertion is true only when the current matching position is at
 the start point of the match, as specified by the startoffset argument
 of pcre_exec(). It differs from \A when the value of startoffset is
 non-zero. By calling pcre_exec() multiple times with appropriate argu-
 ments, you can mimic Perl's /g option, and it is in this kind of imple-
 mentation where \G can be useful.

 Note, however, that PCRE's interpretation of \G, as the start of the
 current match, is subtly different from Perl's, which defines it as the
 end of the previous match. In Perl, these can be different when the
 previously matched string was empty. Because PCRE does just one match
 at a time, it cannot reproduce this behaviour.

 If all the alternatives of a pattern begin with \G, the expression is
 anchored to the starting match position, and the "anchored" flag is set
 in the compiled regular expression.

CIRCUMFLEX AND DOLLAR

 Outside a character class, in the default matching mode, the circumflex
 character is an assertion that is true only if the current matching
 point is at the start of the subject string. If the startoffset argu-
 ment of pcre_exec() is non-zero, circumflex can never match if the
 PCRE_MULTILINE option is unset. Inside a character class, circumflex
 has an entirely different meaning (see below).

 Circumflex need not be the first character of the pattern if a number
 of alternatives are involved, but it should be the first thing in each
 alternative in which it appears if the pattern is ever to match that
 branch. If all possible alternatives start with a circumflex, that is,
 if the pattern is constrained to match only at the start of the sub-
 ject, it is said to be an "anchored" pattern. (There are also other
 constructs that can cause a pattern to be anchored.)

 A dollar character is an assertion that is true only if the current
 matching point is at the end of the subject string, or immediately
 before a newline at the end of the string (by default). Dollar need not
 be the last character of the pattern if a number of alternatives are
 involved, but it should be the last item in any branch in which it
 appears. Dollar has no special meaning in a character class.

 The meaning of dollar can be changed so that it matches only at the

 Dyalog APL/W Version 13.0 Release Notes 152

 very end of the string, by setting the PCRE_DOLLAR_ENDONLY option at
 compile time. This does not affect the \Z assertion.

 The meanings of the circumflex and dollar characters are changed if the
 PCRE_MULTILINE option is set. When this is the case, a circumflex
 matches immediately after internal newlines as well as at the start of
 the subject string. It does not match after a newline that ends the
 string. A dollar matches before any newlines in the string, as well as
 at the very end, when PCRE_MULTILINE is set. When newline is specified
 as the two-character sequence CRLF, isolated CR and LF characters do
 not indicate newlines.

 For example, the pattern /^abc$/ matches the subject string "def\nabc"
 (where \n represents a newline) in multiline mode, but not otherwise.
 Consequently, patterns that are anchored in single line mode because
 all branches start with ^ are not anchored in multiline mode, and a
 match for circumflex is possible when the startoffset argument of
 pcre_exec() is non-zero. The PCRE_DOLLAR_ENDONLY option is ignored if
 PCRE_MULTILINE is set.

 Note that the sequences \A, \Z, and \z can be used to match the start
 and end of the subject in both modes, and if all branches of a pattern
 start with \A it is always anchored, whether or not PCRE_MULTILINE is
 set.

FULL STOP (PERIOD, DOT)

 Outside a character class, a dot in the pattern matches any one charac-
 ter in the subject string except (by default) a character that signi-
 fies the end of a line. In UTF-8 mode, the matched character may be
 more than one byte long.

 When a line ending is defined as a single character, dot never matches
 that character; when the two-character sequence CRLF is used, dot does
 not match CR if it is immediately followed by LF, but otherwise it
 matches all characters (including isolated CRs and LFs). When any Uni-
 code line endings are being recognized, dot does not match CR or LF or
 any of the other line ending characters.

 The behaviour of dot with regard to newlines can be changed. If the
 PCRE_DOTALL option is set, a dot matches any one character, without
 exception. If the two-character sequence CRLF is present in the subject
 string, it takes two dots to match it.

 The handling of dot is entirely independent of the handling of circum-
 flex and dollar, the only relationship being that they both involve
 newlines. Dot has no special meaning in a character class.

MATCHING A SINGLE BYTE

 Outside a character class, the escape sequence \C matches any one byte,
 both in and out of UTF-8 mode. Unlike a dot, it always matches any
 line-ending characters. The feature is provided in Perl in order to
 match individual bytes in UTF-8 mode. Because it breaks up UTF-8 char-
 acters into individual bytes, what remains in the string may be a mal-
 formed UTF-8 string. For this reason, the \C escape sequence is best
 avoided.

 Appendices: PCRE Specifications 153

 PCRE does not allow \C to appear in lookbehind assertions (described
 below), because in UTF-8 mode this would make it impossible to calcu-
 late the length of the lookbehind.

SQUARE BRACKETS AND CHARACTER CLASSES

 An opening square bracket introduces a character class, terminated by a
 closing square bracket. A closing square bracket on its own is not spe-
 cial by default. However, if the PCRE_JAVASCRIPT_COMPAT option is set,
 a lone closing square bracket causes a compile-time error. If a closing
 square bracket is required as a member of the class, it should be the
 first data character in the class (after an initial circumflex, if
 present) or escaped with a backslash.

 A character class matches a single character in the subject. In UTF-8
 mode, the character may be more than one byte long. A matched character
 must be in the set of characters defined by the class, unless the first
 character in the class definition is a circumflex, in which case the
 subject character must not be in the set defined by the class. If a
 circumflex is actually required as a member of the class, ensure it is
 not the first character, or escape it with a backslash.

 For example, the character class [aeiou] matches any lower case vowel,
 while [^aeiou] matches any character that is not a lower case vowel.
 Note that a circumflex is just a convenient notation for specifying the
 characters that are in the class by enumerating those that are not. A
 class that starts with a circumflex is not an assertion; it still con-
 sumes a character from the subject string, and therefore it fails if
 the current pointer is at the end of the string.

 In UTF-8 mode, characters with values greater than 255 can be included
 in a class as a literal string of bytes, or by using the \x{ escaping
 mechanism.

 When caseless matching is set, any letters in a class represent both
 their upper case and lower case versions, so for example, a caseless
 [aeiou] matches "A" as well as "a", and a caseless [^aeiou] does not
 match "A", whereas a caseful version would. In UTF-8 mode, PCRE always
 understands the concept of case for characters whose values are less
 than 128, so caseless matching is always possible. For characters with
 higher values, the concept of case is supported if PCRE is compiled
 with Unicode property support, but not otherwise. If you want to use
 caseless matching in UTF8-mode for characters 128 and above, you must
 ensure that PCRE is compiled with Unicode property support as well as
 with UTF-8 support.

 Characters that might indicate line breaks are never treated in any
 special way when matching character classes, whatever line-ending
 sequence is in use, and whatever setting of the PCRE_DOTALL and
 PCRE_MULTILINE options is used. A class such as [^a] always matches one
 of these characters.

 The minus (hyphen) character can be used to specify a range of charac-
 ters in a character class. For example, [d-m] matches any letter
 between d and m, inclusive. If a minus character is required in a
 class, it must be escaped with a backslash or appear in a position
 where it cannot be interpreted as indicating a range, typically as the
 first or last character in the class.

 Dyalog APL/W Version 13.0 Release Notes 154

 It is not possible to have the literal character "]" as the end charac-
 ter of a range. A pattern such as [W-]46] is interpreted as a class of
 two characters ("W" and "-") followed by a literal string "46]", so it
 would match "W46]" or "-46]". However, if the "]" is escaped with a
 backslash it is interpreted as the end of range, so [W-\]46] is inter-
 preted as a class containing a range followed by two other characters.
 The octal or hexadecimal representation of "]" can also be used to end
 a range.

 Ranges operate in the collating sequence of character values. They can
 also be used for characters specified numerically, for example
 [\000-\037]. In UTF-8 mode, ranges can include characters whose values
 are greater than 255, for example [\x{100}-\x{2ff}].

 If a range that includes letters is used when caseless matching is set,
 it matches the letters in either case. For example, [W-c] is equivalent
 to [][\\^_`wxyzabc], matched caselessly, and in non-UTF-8 mode, if
 character tables for a French locale are in use, [\xc8-\xcb] matches
 accented E characters in both cases. In UTF-8 mode, PCRE supports the
 concept of case for characters with values greater than 128 only when
 it is compiled with Unicode property support.

 The character types \d, \D, \p, \P, \s, \S, \w, and \W may also appear
 in a character class, and add the characters that they match to the
 class. For example, [\dABCDEF] matches any hexadecimal digit. A circum-
 flex can conveniently be used with the upper case character types to
 specify a more restricted set of characters than the matching lower
 case type. For example, the class [^\W_] matches any letter or digit,
 but not underscore.

 The only metacharacters that are recognized in character classes are
 backslash, hyphen (only where it can be interpreted as specifying a
 range), circumflex (only at the start), opening square bracket (only
 when it can be interpreted as introducing a POSIX class name - see the
 next section), and the terminating closing square bracket. However,
 escaping other non-alphanumeric characters does no harm.

POSIX CHARACTER CLASSES

 Perl supports the POSIX notation for character classes. This uses names
 enclosed by [: and :] within the enclosing square brackets. PCRE also
 supports this notation. For example,

 [01[:alpha:]%]

 matches "0", "1", any alphabetic character, or "%". The supported class
 names are

 alnum letters and digits
 alpha letters
 ascii character codes 0 - 127
 blank space or tab only
 cntrl control characters
 digit decimal digits (same as \d)
 graph printing characters, excluding space
 lower lower case letters
 print printing characters, including space
 punct printing characters, excluding letters and digits
 space white space (not quite the same as \s)

 Appendices: PCRE Specifications 155

 upper upper case letters
 word "word" characters (same as \w)
 xdigit hexadecimal digits

 The "space" characters are HT (9), LF (10), VT (11), FF (12), CR (13),
 and space (32). Notice that this list includes the VT character (code
 11). This makes "space" different to \s, which does not include VT (for
 Perl compatibility).

 The name "word" is a Perl extension, and "blank" is a GNU extension
 from Perl 5.8. Another Perl extension is negation, which is indicated
 by a ^ character after the colon. For example,

 [12[:^digit:]]

 matches "1", "2", or any non-digit. PCRE (and Perl) also recognize the
 POSIX syntax [.ch.] and [=ch=] where "ch" is a "collating element", but
 these are not supported, and an error is given if they are encountered.

 In UTF-8 mode, characters with values greater than 128 do not match any
 of the POSIX character classes.

VERTICAL BAR

 Vertical bar characters are used to separate alternative patterns. For
 example, the pattern

 gilbert|sullivan

 matches either "gilbert" or "sullivan". Any number of alternatives may
 appear, and an empty alternative is permitted (matching the empty
 string). The matching process tries each alternative in turn, from left
 to right, and the first one that succeeds is used. If the alternatives
 are within a subpattern (defined below), "succeeds" means matching the
 rest of the main pattern as well as the alternative in the subpattern.

INTERNAL OPTION SETTING

 The settings of the PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and
 PCRE_EXTENDED options (which are Perl-compatible) can be changed from
 within the pattern by a sequence of Perl option letters enclosed
 between "(?" and ")". The option letters are

 i for PCRE_CASELESS
 m for PCRE_MULTILINE
 s for PCRE_DOTALL
 x for PCRE_EXTENDED

 For example, (?im) sets caseless, multiline matching. It is also possi-
 ble to unset these options by preceding the letter with a hyphen, and a
 combined setting and unsetting such as (?im-sx), which sets PCRE_CASE-
 LESS and PCRE_MULTILINE while unsetting PCRE_DOTALL and PCRE_EXTENDED,
 is also permitted. If a letter appears both before and after the
 hyphen, the option is unset.

 The PCRE-specific options PCRE_DUPNAMES, PCRE_UNGREEDY, and PCRE_EXTRA
 can be changed in the same way as the Perl-compatible options by using
 the characters J, U and X respectively.

 Dyalog APL/W Version 13.0 Release Notes 156

 When one of these option changes occurs at top level (that is, not
 inside subpattern parentheses), the change applies to the remainder of
 the pattern that follows. If the change is placed right at the start of
 a pattern, PCRE extracts it into the global options (and it will there-
 fore show up in data extracted by the pcre_fullinfo() function).

 An option change within a subpattern (see below for a description of
 subpatterns) affects only that part of the current pattern that follows
 it, so

 (a(?i)b)c

 matches abc and aBc and no other strings (assuming PCRE_CASELESS is not
 used). By this means, options can be made to have different settings
 in different parts of the pattern. Any changes made in one alternative
 do carry on into subsequent branches within the same subpattern. For
 example,

 (a(?i)b|c)

 matches "ab", "aB", "c", and "C", even though when matching "C" the
 first branch is abandoned before the option setting. This is because
 the effects of option settings happen at compile time. There would be
 some very weird behaviour otherwise.

 Note: There are other PCRE-specific options that can be set by the
 application when the compile or match functions are called. In some
 cases the pattern can contain special leading sequences such as (*CRLF)
 to override what the application has set or what has been defaulted.
 Details are given in the section entitled "Newline sequences" above.
 There is also the (*UTF8) leading sequence that can be used to set
 UTF-8 mode; this is equivalent to setting the PCRE_UTF8 option.

SUBPATTERNS

 Subpatterns are delimited by parentheses (round brackets), which can be
 nested. Turning part of a pattern into a subpattern does two things:

 1. It localizes a set of alternatives. For example, the pattern

 cat(aract|erpillar|)

 matches one of the words "cat", "cataract", or "caterpillar". Without
 the parentheses, it would match "cataract", "erpillar" or an empty
 string.

 2. It sets up the subpattern as a capturing subpattern. This means
 that, when the whole pattern matches, that portion of the subject
 string that matched the subpattern is passed back to the caller via the
 ovector argument of pcre_exec(). Opening parentheses are counted from
 left to right (starting from 1) to obtain numbers for the capturing
 subpatterns.

 For example, if the string "the red king" is matched against the pat-
 tern

 the ((red|white) (king|queen))

 Appendices: PCRE Specifications 157

 the captured substrings are "red king", "red", and "king", and are num-
 bered 1, 2, and 3, respectively.

 The fact that plain parentheses fulfil two functions is not always
 helpful. There are often times when a grouping subpattern is required
 without a capturing requirement. If an opening parenthesis is followed
 by a question mark and a colon, the subpattern does not do any captur-
 ing, and is not counted when computing the number of any subsequent
 capturing subpatterns. For example, if the string "the white queen" is
 matched against the pattern

 the ((?:red|white) (king|queen))

 the captured substrings are "white queen" and "queen", and are numbered
 1 and 2. The maximum number of capturing subpatterns is 65535.

 As a convenient shorthand, if any option settings are required at the
 start of a non-capturing subpattern, the option letters may appear
 between the "?" and the ":". Thus the two patterns

 (?i:saturday|sunday)
 (?:(?i)saturday|sunday)

 match exactly the same set of strings. Because alternative branches are
 tried from left to right, and options are not reset until the end of
 the subpattern is reached, an option setting in one branch does affect
 subsequent branches, so the above patterns match "SUNDAY" as well as
 "Saturday".

DUPLICATE SUBPATTERN NUMBERS

 Perl 5.10 introduced a feature whereby each alternative in a subpattern
 uses the same numbers for its capturing parentheses. Such a subpattern
 starts with (?| and is itself a non-capturing subpattern. For example,
 consider this pattern:

 (?|(Sat)ur|(Sun))day

 Because the two alternatives are inside a (?| group, both sets of cap-
 turing parentheses are numbered one. Thus, when the pattern matches,
 you can look at captured substring number one, whichever alternative
 matched. This construct is useful when you want to capture part, but
 not all, of one of a number of alternatives. Inside a (?| group, paren-
 theses are numbered as usual, but the number is reset at the start of
 each branch. The numbers of any capturing buffers that follow the sub-
 pattern start after the highest number used in any branch. The follow-
 ing example is taken from the Perl documentation. The numbers under-
 neath show in which buffer the captured content will be stored.

 # before ---------------branch-reset----------- after
 / (a) (?| x (y) z | (p (q) r) | (t) u (v)) (z) /x
 # 1 2 2 3 2 3 4

 A back reference to a numbered subpattern uses the most recent value
 that is set for that number by any subpattern. The following pattern
 matches "abcabc" or "defdef":

 /(?|(abc)|(def))\1/

 Dyalog APL/W Version 13.0 Release Notes 158

 In contrast, a recursive or "subroutine" call to a numbered subpattern
 always refers to the first one in the pattern with the given number.
 The following pattern matches "abcabc" or "defabc":

 /(?|(abc)|(def))(?1)/

 If a condition test for a subpattern's having matched refers to a non-
 unique number, the test is true if any of the subpatterns of that num-
 ber have matched.

 An alternative approach to using this "branch reset" feature is to use
 duplicate named subpatterns, as described in the next section.

NAMED SUBPATTERNS

 Identifying capturing parentheses by number is simple, but it can be
 very hard to keep track of the numbers in complicated regular expres-
 sions. Furthermore, if an expression is modified, the numbers may
 change. To help with this difficulty, PCRE supports the naming of sub-
 patterns. This feature was not added to Perl until release 5.10. Python
 had the feature earlier, and PCRE introduced it at release 4.0, using
 the Python syntax. PCRE now supports both the Perl and the Python syn-
 tax. Perl allows identically numbered subpatterns to have different
 names, but PCRE does not.

 In PCRE, a subpattern can be named in one of three ways: (?<name>...)
 or (?'name'...) as in Perl, or (?P<name>...) as in Python. References
 to capturing parentheses from other parts of the pattern, such as back
 references, recursion, and conditions, can be made by name as well as
 by number.

 Names consist of up to 32 alphanumeric characters and underscores.
 Named capturing parentheses are still allocated numbers as well as
 names, exactly as if the names were not present. The PCRE API provides
 function calls for extracting the name-to-number translation table from
 a compiled pattern. There is also a convenience function for extracting
 a captured substring by name.

 By default, a name must be unique within a pattern, but it is possible
 to relax this constraint by setting the PCRE_DUPNAMES option at compile
 time. (Duplicate names are also always permitted for subpatterns with
 the same number, set up as described in the previous section.) Dupli-
 cate names can be useful for patterns where only one instance of the
 named parentheses can match. Suppose you want to match the name of a
 weekday, either as a 3-letter abbreviation or as the full name, and in
 both cases you want to extract the abbreviation. This pattern (ignoring
 the line breaks) does the job:

 (?<DN>Mon|Fri|Sun)(?:day)?|
 (?<DN>Tue)(?:sday)?|
 (?<DN>Wed)(?:nesday)?|
 (?<DN>Thu)(?:rsday)?|
 (?<DN>Sat)(?:urday)?

 There are five capturing substrings, but only one is ever set after a
 match. (An alternative way of solving this problem is to use a "branch
 reset" subpattern, as described in the previous section.)

 The convenience function for extracting the data by name returns the

 Appendices: PCRE Specifications 159

 substring for the first (and in this example, the only) subpattern of
 that name that matched. This saves searching to find which numbered
 subpattern it was.

 If you make a back reference to a non-unique named subpattern from
 elsewhere in the pattern, the one that corresponds to the first occur-
 rence of the name is used. In the absence of duplicate numbers (see the
 previous section) this is the one with the lowest number. If you use a
 named reference in a condition test (see the section about conditions
 below), either to check whether a subpattern has matched, or to check
 for recursion, all subpatterns with the same name are tested. If the
 condition is true for any one of them, the overall condition is true.
 This is the same behaviour as testing by number. For further details of
 the interfaces for handling named subpatterns, see the pcreapi documen-
 tation.

 Warning: You cannot use different names to distinguish between two sub-
 patterns with the same number because PCRE uses only the numbers when
 matching. For this reason, an error is given at compile time if differ-
 ent names are given to subpatterns with the same number. However, you
 can give the same name to subpatterns with the same number, even when
 PCRE_DUPNAMES is not set.

REPETITION

 Repetition is specified by quantifiers, which can follow any of the
 following items:

 a literal data character
 the dot metacharacter
 the \C escape sequence
 the \X escape sequence (in UTF-8 mode with Unicode properties)
 the \R escape sequence
 an escape such as \d that matches a single character
 a character class
 a back reference (see next section)
 a parenthesized subpattern (unless it is an assertion)
 a recursive or "subroutine" call to a subpattern

 The general repetition quantifier specifies a minimum and maximum num-
 ber of permitted matches, by giving the two numbers in curly brackets
 (braces), separated by a comma. The numbers must be less than 65536,
 and the first must be less than or equal to the second. For example:

 z{2,4}

 matches "zz", "zzz", or "zzzz". A closing brace on its own is not a
 special character. If the second number is omitted, but the comma is
 present, there is no upper limit; if the second number and the comma
 are both omitted, the quantifier specifies an exact number of required
 matches. Thus

 [aeiou]{3,}

 matches at least 3 successive vowels, but may match many more, while

 \d{8}

 matches exactly 8 digits. An opening curly bracket that appears in a

 Dyalog APL/W Version 13.0 Release Notes 160

 position where a quantifier is not allowed, or one that does not match
 the syntax of a quantifier, is taken as a literal character. For exam-
 ple, {,6} is not a quantifier, but a literal string of four characters.

 In UTF-8 mode, quantifiers apply to UTF-8 characters rather than to
 individual bytes. Thus, for example, \x{100}{2} matches two UTF-8 char-
 acters, each of which is represented by a two-byte sequence. Similarly,
 when Unicode property support is available, \X{3} matches three Unicode
 extended sequences, each of which may be several bytes long (and they
 may be of different lengths).

 The quantifier {0} is permitted, causing the expression to behave as if
 the previous item and the quantifier were not present. This may be use-
 ful for subpatterns that are referenced as subroutines from elsewhere
 in the pattern. Items other than subpatterns that have a {0} quantifier
 are omitted from the compiled pattern.

 For convenience, the three most common quantifiers have single-charac-
 ter abbreviations:

 * is equivalent to {0,}
 + is equivalent to {1,}
 ? is equivalent to {0,1}

 It is possible to construct infinite loops by following a subpattern
 that can match no characters with a quantifier that has no upper limit,
 for example:

 (a?)*

 Earlier versions of Perl and PCRE used to give an error at compile time
 for such patterns. However, because there are cases where this can be
 useful, such patterns are now accepted, but if any repetition of the
 subpattern does in fact match no characters, the loop is forcibly bro-
 ken.

 By default, the quantifiers are "greedy", that is, they match as much
 as possible (up to the maximum number of permitted times), without
 causing the rest of the pattern to fail. The classic example of where
 this gives problems is in trying to match comments in C programs. These
 appear between /* and */ and within the comment, individual * and /
 characters may appear. An attempt to match C comments by applying the
 pattern

 /*.**/

 to the string

 /* first comment */ not comment /* second comment */

 fails, because it matches the entire string owing to the greediness of
 the .* item.

 However, if a quantifier is followed by a question mark, it ceases to
 be greedy, and instead matches the minimum number of times possible, so
 the pattern

 /*.*?*/

 does the right thing with the C comments. The meaning of the various

 Appendices: PCRE Specifications 161

 quantifiers is not otherwise changed, just the preferred number of
 matches. Do not confuse this use of question mark with its use as a
 quantifier in its own right. Because it has two uses, it can sometimes
 appear doubled, as in

 \d??\d

 which matches one digit by preference, but can match two if that is the
 only way the rest of the pattern matches.

 If the PCRE_UNGREEDY option is set (an option that is not available in
 Perl), the quantifiers are not greedy by default, but individual ones
 can be made greedy by following them with a question mark. In other
 words, it inverts the default behaviour.

 When a parenthesized subpattern is quantified with a minimum repeat
 count that is greater than 1 or with a limited maximum, more memory is
 required for the compiled pattern, in proportion to the size of the
 minimum or maximum.

 If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equiv-
 alent to Perl's /s) is set, thus allowing the dot to match newlines,
 the pattern is implicitly anchored, because whatever follows will be
 tried against every character position in the subject string, so there
 is no point in retrying the overall match at any position after the
 first. PCRE normally treats such a pattern as though it were preceded
 by \A.

 In cases where it is known that the subject string contains no new-
 lines, it is worth setting PCRE_DOTALL in order to obtain this opti-
 mization, or alternatively using ^ to indicate anchoring explicitly.

 However, there is one situation where the optimization cannot be used.
 When .* is inside capturing parentheses that are the subject of a back
 reference elsewhere in the pattern, a match at the start may fail where
 a later one succeeds. Consider, for example:

 (.*)abc\1

 If the subject is "xyz123abc123" the match point is the fourth charac-
 ter. For this reason, such a pattern is not implicitly anchored.

 When a capturing subpattern is repeated, the value captured is the sub-
 string that matched the final iteration. For example, after

 (tweedle[dume]{3}\s*)+

 has matched "tweedledum tweedledee" the value of the captured substring
 is "tweedledee". However, if there are nested capturing subpatterns,
 the corresponding captured values may have been set in previous itera-
 tions. For example, after

 /(a|(b))+/

 matches "aba" the value of the second captured substring is "b".

ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS

 With both maximizing ("greedy") and minimizing ("ungreedy" or "lazy")

 Dyalog APL/W Version 13.0 Release Notes 162

 repetition, failure of what follows normally causes the repeated item
 to be re-evaluated to see if a different number of repeats allows the
 rest of the pattern to match. Sometimes it is useful to prevent this,
 either to change the nature of the match, or to cause it fail earlier
 than it otherwise might, when the author of the pattern knows there is
 no point in carrying on.

 Consider, for example, the pattern \d+foo when applied to the subject
 line

 123456bar

 After matching all 6 digits and then failing to match "foo", the normal
 action of the matcher is to try again with only 5 digits matching the
 \d+ item, and then with 4, and so on, before ultimately failing.
 "Atomic grouping" (a term taken from Jeffrey Friedl's book) provides
 the means for specifying that once a subpattern has matched, it is not
 to be re-evaluated in this way.

 If we use atomic grouping for the previous example, the matcher gives
 up immediately on failing to match "foo" the first time. The notation
 is a kind of special parenthesis, starting with (?> as in this example:

 (?>\d+)foo

 This kind of parenthesis "locks up" the part of the pattern it con-
 tains once it has matched, and a failure further into the pattern is
 prevented from backtracking into it. Backtracking past it to previous
 items, however, works as normal.

 An alternative description is that a subpattern of this type matches
 the string of characters that an identical standalone pattern would
 match, if anchored at the current point in the subject string.

 Atomic grouping subpatterns are not capturing subpatterns. Simple cases
 such as the above example can be thought of as a maximizing repeat that
 must swallow everything it can. So, while both \d+ and \d+? are pre-
 pared to adjust the number of digits they match in order to make the
 rest of the pattern match, (?>\d+) can only match an entire sequence of
 digits.

 Atomic groups in general can of course contain arbitrarily complicated
 subpatterns, and can be nested. However, when the subpattern for an
 atomic group is just a single repeated item, as in the example above, a
 simpler notation, called a "possessive quantifier" can be used. This
 consists of an additional + character following a quantifier. Using
 this notation, the previous example can be rewritten as

 \d++foo

 Note that a possessive quantifier can be used with an entire group, for
 example:

 (abc|xyz){2,3}+

 Possessive quantifiers are always greedy; the setting of the
 PCRE_UNGREEDY option is ignored. They are a convenient notation for the
 simpler forms of atomic group. However, there is no difference in the
 meaning of a possessive quantifier and the equivalent atomic group,
 though there may be a performance difference; possessive quantifiers

 Appendices: PCRE Specifications 163

 should be slightly faster.

 The possessive quantifier syntax is an extension to the Perl 5.8 syn-
 tax. Jeffrey Friedl originated the idea (and the name) in the first
 edition of his book. Mike McCloskey liked it, so implemented it when he
 built Sun's Java package, and PCRE copied it from there. It ultimately
 found its way into Perl at release 5.10.

 PCRE has an optimization that automatically "possessifies" certain sim-
 ple pattern constructs. For example, the sequence A+B is treated as
 A++B because there is no point in backtracking into a sequence of A's
 when B must follow.

 When a pattern contains an unlimited repeat inside a subpattern that
 can itself be repeated an unlimited number of times, the use of an
 atomic group is the only way to avoid some failing matches taking a
 very long time indeed. The pattern

 (\D+|<\d+>)*[!?]

 matches an unlimited number of substrings that either consist of non-
 digits, or digits enclosed in <>, followed by either ! or ?. When it
 matches, it runs quickly. However, if it is applied to

 aa

 it takes a long time before reporting failure. This is because the
 string can be divided between the internal \D+ repeat and the external
 * repeat in a large number of ways, and all have to be tried. (The
 example uses [!?] rather than a single character at the end, because
 both PCRE and Perl have an optimization that allows for fast failure
 when a single character is used. They remember the last single charac-
 ter that is required for a match, and fail early if it is not present
 in the string.) If the pattern is changed so that it uses an atomic
 group, like this:

 ((?>\D+)|<\d+>)*[!?]

 sequences of non-digits cannot be broken, and failure happens quickly.

BACK REFERENCES

 Outside a character class, a backslash followed by a digit greater than
 0 (and possibly further digits) is a back reference to a capturing sub-
 pattern earlier (that is, to its left) in the pattern, provided there
 have been that many previous capturing left parentheses.

 However, if the decimal number following the backslash is less than 10,
 it is always taken as a back reference, and causes an error only if
 there are not that many capturing left parentheses in the entire pat-
 tern. In other words, the parentheses that are referenced need not be
 to the left of the reference for numbers less than 10. A "forward back
 reference" of this type can make sense when a repetition is involved
 and the subpattern to the right has participated in an earlier itera-
 tion.

 It is not possible to have a numerical "forward back reference" to a
 subpattern whose number is 10 or more using this syntax because a
 sequence such as \50 is interpreted as a character defined in octal.

 Dyalog APL/W Version 13.0 Release Notes 164

 See the subsection entitled "Non-printing characters" above for further
 details of the handling of digits following a backslash. There is no
 such problem when named parentheses are used. A back reference to any
 subpattern is possible using named parentheses (see below).

 Another way of avoiding the ambiguity inherent in the use of digits
 following a backslash is to use the \g escape sequence, which is a fea-
 ture introduced in Perl 5.10. This escape must be followed by an
 unsigned number or a negative number, optionally enclosed in braces.
 These examples are all identical:

 (ring), \1
 (ring), \g1
 (ring), \g{1}

 An unsigned number specifies an absolute reference without the ambigu-
 ity that is present in the older syntax. It is also useful when literal
 digits follow the reference. A negative number is a relative reference.
 Consider this example:

 (abc(def)ghi)\g{-1}

 The sequence \g{-1} is a reference to the most recently started captur-
 ing subpattern before \g, that is, is it equivalent to \2. Similarly,
 \g{-2} would be equivalent to \1. The use of relative references can be
 helpful in long patterns, and also in patterns that are created by
 joining together fragments that contain references within themselves.

 A back reference matches whatever actually matched the capturing sub-
 pattern in the current subject string, rather than anything matching
 the subpattern itself (see "Subpatterns as subroutines" below for a way
 of doing that). So the pattern

 (sens|respons)e and \1ibility

 matches "sense and sensibility" and "response and responsibility", but
 not "sense and responsibility". If caseful matching is in force at the
 time of the back reference, the case of letters is relevant. For exam-
 ple,

 ((?i)rah)\s+\1

 matches "rah rah" and "RAH RAH", but not "RAH rah", even though the
 original capturing subpattern is matched caselessly.

 There are several different ways of writing back references to named
 subpatterns. The .NET syntax \k{name} and the Perl syntax \k<name> or
 \k'name' are supported, as is the Python syntax (?P=name). Perl 5.10's
 unified back reference syntax, in which \g can be used for both numeric
 and named references, is also supported. We could rewrite the above
 example in any of the following ways:

 (?<p1>(?i)rah)\s+\k<p1>
 (?'p1'(?i)rah)\s+\k{p1}
 (?P<p1>(?i)rah)\s+(?P=p1)
 (?<p1>(?i)rah)\s+\g{p1}

 A subpattern that is referenced by name may appear in the pattern
 before or after the reference.

 Appendices: PCRE Specifications 165

 There may be more than one back reference to the same subpattern. If a
 subpattern has not actually been used in a particular match, any back
 references to it always fail by default. For example, the pattern

 (a|(bc))\2

 always fails if it starts to match "a" rather than "bc". However, if
 the PCRE_JAVASCRIPT_COMPAT option is set at compile time, a back refer-
 ence to an unset value matches an empty string.

 Because there may be many capturing parentheses in a pattern, all dig-
 its following a backslash are taken as part of a potential back refer-
 ence number. If the pattern continues with a digit character, some
 delimiter must be used to terminate the back reference. If the
 PCRE_EXTENDED option is set, this can be whitespace. Otherwise, the \g{
 syntax or an empty comment (see "Comments" below) can be used.

 Recursive back references

 A back reference that occurs inside the parentheses to which it refers
 fails when the subpattern is first used, so, for example, (a\1) never
 matches. However, such references can be useful inside repeated sub-
 patterns. For example, the pattern

 (a|b\1)+

 matches any number of "a"s and also "aba", "ababbaa" etc. At each iter-
 ation of the subpattern, the back reference matches the character
 string corresponding to the previous iteration. In order for this to
 work, the pattern must be such that the first iteration does not need
 to match the back reference. This can be done using alternation, as in
 the example above, or by a quantifier with a minimum of zero.

 Back references of this type cause the group that they reference to be
 treated as an atomic group. Once the whole group has been matched, a
 subsequent matching failure cannot cause backtracking into the middle
 of the group.

ASSERTIONS

 An assertion is a test on the characters following or preceding the
 current matching point that does not actually consume any characters.
 The simple assertions coded as \b, \B, \A, \G, \Z, \z, ^ and $ are
 described above.

 More complicated assertions are coded as subpatterns. There are two
 kinds: those that look ahead of the current position in the subject
 string, and those that look behind it. An assertion subpattern is
 matched in the normal way, except that it does not cause the current
 matching position to be changed.

 Assertion subpatterns are not capturing subpatterns, and may not be
 repeated, because it makes no sense to assert the same thing several
 times. If any kind of assertion contains capturing subpatterns within
 it, these are counted for the purposes of numbering the capturing sub-
 patterns in the whole pattern. However, substring capturing is carried
 out only for positive assertions, because it does not make sense for
 negative assertions.

 Dyalog APL/W Version 13.0 Release Notes 166

 Lookahead assertions

 Lookahead assertions start with (?= for positive assertions and (?! for
 negative assertions. For example,

 \w+(?=;)

 matches a word followed by a semicolon, but does not include the semi-
 colon in the match, and

 foo(?!bar)

 matches any occurrence of "foo" that is not followed by "bar". Note
 that the apparently similar pattern

 (?!foo)bar

 does not find an occurrence of "bar" that is preceded by something
 other than "foo"; it finds any occurrence of "bar" whatsoever, because
 the assertion (?!foo) is always true when the next three characters are
 "bar". A lookbehind assertion is needed to achieve the other effect.

 If you want to force a matching failure at some point in a pattern, the
 most convenient way to do it is with (?!) because an empty string
 always matches, so an assertion that requires there not to be an empty
 string must always fail. The Perl 5.10 backtracking control verb
 (*FAIL) or (*F) is essentially a synonym for (?!).

 Lookbehind assertions

 Lookbehind assertions start with (?<= for positive assertions and (?<!
 for negative assertions. For example,

 (?<!foo)bar

 does find an occurrence of "bar" that is not preceded by "foo". The
 contents of a lookbehind assertion are restricted such that all the
 strings it matches must have a fixed length. However, if there are sev-
 eral top-level alternatives, they do not all have to have the same
 fixed length. Thus

 (?<=bullock|donkey)

 is permitted, but

 (?<!dogs?|cats?)

 causes an error at compile time. Branches that match different length
 strings are permitted only at the top level of a lookbehind assertion.
 This is an extension compared with Perl (5.8 and 5.10), which requires
 all branches to match the same length of string. An assertion such as

 (?<=ab(c|de))

 is not permitted, because its single top-level branch can match two
 different lengths, but it is acceptable to PCRE if rewritten to use two
 top-level branches:

 (?<=abc|abde)

 Appendices: PCRE Specifications 167

 In some cases, the Perl 5.10 escape sequence \K (see above) can be used
 instead of a lookbehind assertion to get round the fixed-length
 restriction.

 The implementation of lookbehind assertions is, for each alternative,
 to temporarily move the current position back by the fixed length and
 then try to match. If there are insufficient characters before the cur-
 rent position, the assertion fails.

 PCRE does not allow the \C escape (which matches a single byte in UTF-8
 mode) to appear in lookbehind assertions, because it makes it impossi-
 ble to calculate the length of the lookbehind. The \X and \R escapes,
 which can match different numbers of bytes, are also not permitted.

 "Subroutine" calls (see below) such as (?2) or (?&X) are permitted in
 lookbehinds, as long as the subpattern matches a fixed-length string.
 Recursion, however, is not supported.

 Possessive quantifiers can be used in conjunction with lookbehind
 assertions to specify efficient matching of fixed-length strings at the
 end of subject strings. Consider a simple pattern such as

 abcd$

 when applied to a long string that does not match. Because matching
 proceeds from left to right, PCRE will look for each "a" in the subject
 and then see if what follows matches the rest of the pattern. If the
 pattern is specified as

 ^.*abcd$

 the initial .* matches the entire string at first, but when this fails
 (because there is no following "a"), it backtracks to match all but the
 last character, then all but the last two characters, and so on. Once
 again the search for "a" covers the entire string, from right to left,
 so we are no better off. However, if the pattern is written as

 ^.*+(?<=abcd)

 there can be no backtracking for the .*+ item; it can match only the
 entire string. The subsequent lookbehind assertion does a single test
 on the last four characters. If it fails, the match fails immediately.
 For long strings, this approach makes a significant difference to the
 processing time.

 Using multiple assertions

 Several assertions (of any sort) may occur in succession. For example,

 (?<=\d{3})(?<!999)foo

 matches "foo" preceded by three digits that are not "999". Notice that
 each of the assertions is applied independently at the same point in
 the subject string. First there is a check that the previous three
 characters are all digits, and then there is a check that the same
 three characters are not "999". This pattern does not match "foo" pre-
 ceded by six characters, the first of which are digits and the last
 three of which are not "999". For example, it doesn't match "123abc-
 foo". A pattern to do that is

 Dyalog APL/W Version 13.0 Release Notes 168

 (?<=\d{3}...)(?<!999)foo

 This time the first assertion looks at the preceding six characters,
 checking that the first three are digits, and then the second assertion
 checks that the preceding three characters are not "999".

 Assertions can be nested in any combination. For example,

 (?<=(?<!foo)bar)baz

 matches an occurrence of "baz" that is preceded by "bar" which in turn
 is not preceded by "foo", while

 (?<=\d{3}(?!999)...)foo

 is another pattern that matches "foo" preceded by three digits and any
 three characters that are not "999".

CONDITIONAL SUBPATTERNS

 It is possible to cause the matching process to obey a subpattern con-
 ditionally or to choose between two alternative subpatterns, depending
 on the result of an assertion, or whether a specific capturing subpat-
 tern has already been matched. The two possible forms of conditional
 subpattern are:

 (?(condition)yes-pattern)
 (?(condition)yes-pattern|no-pattern)

 If the condition is satisfied, the yes-pattern is used; otherwise the
 no-pattern (if present) is used. If there are more than two alterna-
 tives in the subpattern, a compile-time error occurs.

 There are four kinds of condition: references to subpatterns, refer-
 ences to recursion, a pseudo-condition called DEFINE, and assertions.

 Checking for a used subpattern by number

 If the text between the parentheses consists of a sequence of digits,
 the condition is true if a capturing subpattern of that number has pre-
 viously matched. If there is more than one capturing subpattern with
 the same number (see the earlier section about duplicate subpattern
 numbers), the condition is true if any of them have been set. An alter-
 native notation is to precede the digits with a plus or minus sign. In
 this case, the subpattern number is relative rather than absolute. The
 most recently opened parentheses can be referenced by (?(-1), the next
 most recent by (?(-2), and so on. In looping constructs it can also
 make sense to refer to subsequent groups with constructs such as
 (?(+2).

 Consider the following pattern, which contains non-significant white
 space to make it more readable (assume the PCRE_EXTENDED option) and to
 divide it into three parts for ease of discussion:

 (\()? [^()]+ (?(1) \))

 The first part matches an optional opening parenthesis, and if that
 character is present, sets it as the first captured substring. The sec-
 ond part matches one or more characters that are not parentheses. The

 Appendices: PCRE Specifications 169

 third part is a conditional subpattern that tests whether the first set
 of parentheses matched or not. If they did, that is, if subject started
 with an opening parenthesis, the condition is true, and so the yes-pat-
 tern is executed and a closing parenthesis is required. Otherwise,
 since no-pattern is not present, the subpattern matches nothing. In
 other words, this pattern matches a sequence of non-parentheses,
 optionally enclosed in parentheses.

 If you were embedding this pattern in a larger one, you could use a
 relative reference:

 ...other stuff... (\()? [^()]+ (?(-1) \)) ...

 This makes the fragment independent of the parentheses in the larger
 pattern.

 Checking for a used subpattern by name

 Perl uses the syntax (?(<name>)...) or (?('name')...) to test for a
 used subpattern by name. For compatibility with earlier versions of
 PCRE, which had this facility before Perl, the syntax (?(name)...) is
 also recognized. However, there is a possible ambiguity with this syn-
 tax, because subpattern names may consist entirely of digits. PCRE
 looks first for a named subpattern; if it cannot find one and the name
 consists entirely of digits, PCRE looks for a subpattern of that num-
 ber, which must be greater than zero. Using subpattern names that con-
 sist entirely of digits is not recommended.

 Rewriting the above example to use a named subpattern gives this:

 (?<OPEN> \()? [^()]+ (?(<OPEN>) \))

 If the name used in a condition of this kind is a duplicate, the test
 is applied to all subpatterns of the same name, and is true if any one
 of them has matched.

 Checking for pattern recursion

 If the condition is the string (R), and there is no subpattern with the
 name R, the condition is true if a recursive call to the whole pattern
 or any subpattern has been made. If digits or a name preceded by amper-
 sand follow the letter R, for example:

 (?(R3)...) or (?(R&name)...)

 the condition is true if the most recent recursion is into a subpattern
 whose number or name is given. This condition does not check the entire
 recursion stack. If the name used in a condition of this kind is a
 duplicate, the test is applied to all subpatterns of the same name, and
 is true if any one of them is the most recent recursion.

 At "top level", all these recursion test conditions are false. The
 syntax for recursive patterns is described below.

 Defining subpatterns for use by reference only

 If the condition is the string (DEFINE), and there is no subpattern
 with the name DEFINE, the condition is always false. In this case,
 there may be only one alternative in the subpattern. It is always
 skipped if control reaches this point in the pattern; the idea of

 Dyalog APL/W Version 13.0 Release Notes 170

 DEFINE is that it can be used to define "subroutines" that can be ref-
 erenced from elsewhere. (The use of "subroutines" is described below.)
 For example, a pattern to match an IPv4 address could be written like
 this (ignore whitespace and line breaks):

 (?(DEFINE) (?<byte> 2[0-4]\d | 25[0-5] | 1\d\d | [1-9]?\d))
 \b (?&byte) (\.(?&byte)){3} \b

 The first part of the pattern is a DEFINE group inside which a another
 group named "byte" is defined. This matches an individual component of
 an IPv4 address (a number less than 256). When matching takes place,
 this part of the pattern is skipped because DEFINE acts like a false
 condition. The rest of the pattern uses references to the named group
 to match the four dot-separated components of an IPv4 address, insist-
 ing on a word boundary at each end.

 Assertion conditions

 If the condition is not in any of the above formats, it must be an
 assertion. This may be a positive or negative lookahead or lookbehind
 assertion. Consider this pattern, again containing non-significant
 white space, and with the two alternatives on the second line:

 (?(?=[^a-z]*[a-z])
 \d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2})

 The condition is a positive lookahead assertion that matches an
 optional sequence of non-letters followed by a letter. In other words,
 it tests for the presence of at least one letter in the subject. If a
 letter is found, the subject is matched against the first alternative;
 otherwise it is matched against the second. This pattern matches
 strings in one of the two forms dd-aaa-dd or dd-dd-dd, where aaa are
 letters and dd are digits.

COMMENTS

 The sequence (?# marks the start of a comment that continues up to the
 next closing parenthesis. Nested parentheses are not permitted. The
 characters that make up a comment play no part in the pattern matching
 at all.

 If the PCRE_EXTENDED option is set, an unescaped # character outside a
 character class introduces a comment that continues to immediately
 after the next newline in the pattern.

RECURSIVE PATTERNS

 Consider the problem of matching a string in parentheses, allowing for
 unlimited nested parentheses. Without the use of recursion, the best
 that can be done is to use a pattern that matches up to some fixed
 depth of nesting. It is not possible to handle an arbitrary nesting
 depth.

 For some time, Perl has provided a facility that allows regular expres-
 sions to recurse (amongst other things). It does this by interpolating
 Perl code in the expression at run time, and the code can refer to the
 expression itself. A Perl pattern using code interpolation to solve the
 parentheses problem can be created like this:

 Appendices: PCRE Specifications 171

 $re = qr{\((?: (?>[^()]+) | (?p{$re}))* \)}x;

 The (?p{...}) item interpolates Perl code at run time, and in this case
 refers recursively to the pattern in which it appears.

 Obviously, PCRE cannot support the interpolation of Perl code. Instead,
 it supports special syntax for recursion of the entire pattern, and
 also for individual subpattern recursion. After its introduction in
 PCRE and Python, this kind of recursion was subsequently introduced
 into Perl at release 5.10.

 A special item that consists of (? followed by a number greater than
 zero and a closing parenthesis is a recursive call of the subpattern of
 the given number, provided that it occurs inside that subpattern. (If
 not, it is a "subroutine" call, which is described in the next sec-
 tion.) The special item (?R) or (?0) is a recursive call of the entire
 regular expression.

 This PCRE pattern solves the nested parentheses problem (assume the
 PCRE_EXTENDED option is set so that white space is ignored):

 \(([^()]++ | (?R))* \)

 First it matches an opening parenthesis. Then it matches any number of
 substrings which can either be a sequence of non-parentheses, or a
 recursive match of the pattern itself (that is, a correctly parenthe-
 sized substring). Finally there is a closing parenthesis. Note the use
 of a possessive quantifier to avoid backtracking into sequences of non-
 parentheses.

 If this were part of a larger pattern, you would not want to recurse
 the entire pattern, so instead you could use this:

 (\(([^()]++ | (?1))* \))

 We have put the pattern into parentheses, and caused the recursion to
 refer to them instead of the whole pattern.

 In a larger pattern, keeping track of parenthesis numbers can be
 tricky. This is made easier by the use of relative references (a Perl
 5.10 feature). Instead of (?1) in the pattern above you can write
 (?-2) to refer to the second most recently opened parentheses preceding
 the recursion. In other words, a negative number counts capturing
 parentheses leftwards from the point at which it is encountered.

 It is also possible to refer to subsequently opened parentheses, by
 writing references such as (?+2). However, these cannot be recursive
 because the reference is not inside the parentheses that are refer-
 enced. They are always "subroutine" calls, as described in the next
 section.

 An alternative approach is to use named parentheses instead. The Perl
 syntax for this is (?&name); PCRE's earlier syntax (?P>name) is also
 supported. We could rewrite the above example as follows:

 (?<pn> \(([^()]++ | (?&pn))* \))

 If there is more than one subpattern with the same name, the earliest
 one is used.

 Dyalog APL/W Version 13.0 Release Notes 172

 This particular example pattern that we have been looking at contains
 nested unlimited repeats, and so the use of a possessive quantifier for
 matching strings of non-parentheses is important when applying the pat-
 tern to strings that do not match. For example, when this pattern is
 applied to

 (aaa()

 it yields "no match" quickly. However, if a possessive quantifier is
 not used, the match runs for a very long time indeed because there are
 so many different ways the + and * repeats can carve up the subject,
 and all have to be tested before failure can be reported.

 At the end of a match, the values of capturing parentheses are those
 from the outermost level. If you want to obtain intermediate values, a
 callout function can be used (see below and the pcrecallout documenta-
 tion). If the pattern above is matched against

 (ab(cd)ef)

 the value for the inner capturing parentheses (numbered 2) is "ef",
 which is the last value taken on at the top level. If a capturing sub-
 pattern is not matched at the top level, its final value is unset, even
 if it is (temporarily) set at a deeper level.

 If there are more than 15 capturing parentheses in a pattern, PCRE has
 to obtain extra memory to store data during a recursion, which it does
 by using pcre_malloc, freeing it via pcre_free afterwards. If no memory
 can be obtained, the match fails with the PCRE_ERROR_NOMEMORY error.

 Do not confuse the (?R) item with the condition (R), which tests for
 recursion. Consider this pattern, which matches text in angle brack-
 ets, allowing for arbitrary nesting. Only digits are allowed in nested
 brackets (that is, when recursing), whereas any characters are permit-
 ted at the outer level.

 < (?: (?(R) \d++ | [^<>]*+) | (?R)) * >

 In this pattern, (?(R) is the start of a conditional subpattern, with
 two different alternatives for the recursive and non-recursive cases.
 The (?R) item is the actual recursive call.

 Recursion difference from Perl

 In PCRE (like Python, but unlike Perl), a recursive subpattern call is
 always treated as an atomic group. That is, once it has matched some of
 the subject string, it is never re-entered, even if it contains untried
 alternatives and there is a subsequent matching failure. This can be
 illustrated by the following pattern, which purports to match a palin-
 dromic string that contains an odd number of characters (for example,
 "a", "aba", "abcba", "abcdcba"):

 ^(.|(.)(?1)\2)$

 The idea is that it either matches a single character, or two identical
 characters surrounding a sub-palindrome. In Perl, this pattern works;
 in PCRE it does not if the pattern is longer than three characters.
 Consider the subject string "abcba":

 Appendices: PCRE Specifications 173

 At the top level, the first character is matched, but as it is not at
 the end of the string, the first alternative fails; the second alterna-
 tive is taken and the recursion kicks in. The recursive call to subpat-
 tern 1 successfully matches the next character ("b"). (Note that the
 beginning and end of line tests are not part of the recursion).

 Back at the top level, the next character ("c") is compared with what
 subpattern 2 matched, which was "a". This fails. Because the recursion
 is treated as an atomic group, there are now no backtracking points,
 and so the entire match fails. (Perl is able, at this point, to re-
 enter the recursion and try the second alternative.) However, if the
 pattern is written with the alternatives in the other order, things are
 different:

 ^((.)(?1)\2|.)$

 This time, the recursing alternative is tried first, and continues to
 recurse until it runs out of characters, at which point the recursion
 fails. But this time we do have another alternative to try at the
 higher level. That is the big difference: in the previous case the
 remaining alternative is at a deeper recursion level, which PCRE cannot
 use.

 To change the pattern so that matches all palindromic strings, not just
 those with an odd number of characters, it is tempting to change the
 pattern to this:

 ^((.)(?1)\2|.?)$

 Again, this works in Perl, but not in PCRE, and for the same reason.
 When a deeper recursion has matched a single character, it cannot be
 entered again in order to match an empty string. The solution is to
 separate the two cases, and write out the odd and even cases as alter-
 natives at the higher level:

 ^(?:((.)(?1)\2|)|((.)(?3)\4|.))

 If you want to match typical palindromic phrases, the pattern has to
 ignore all non-word characters, which can be done like this:

 ^\W*+(?:((.)\W*+(?1)\W*+\2|)|((.)\W*+(?3)\W*+\4|\W*+.\W*+))\W*+$

 If run with the PCRE_CASELESS option, this pattern matches phrases such
 as "A man, a plan, a canal: Panama!" and it works well in both PCRE and
 Perl. Note the use of the possessive quantifier *+ to avoid backtrack-
 ing into sequences of non-word characters. Without this, PCRE takes a
 great deal longer (ten times or more) to match typical phrases, and
 Perl takes so long that you think it has gone into a loop.

 WARNING: The palindrome-matching patterns above work only if the sub-
 ject string does not start with a palindrome that is shorter than the
 entire string. For example, although "abcba" is correctly matched, if
 the subject is "ababa", PCRE finds the palindrome "aba" at the start,
 then fails at top level because the end of the string does not follow.
 Once again, it cannot jump back into the recursion to try other alter-
 natives, so the entire match fails.

SUBPATTERNS AS SUBROUTINES

 Dyalog APL/W Version 13.0 Release Notes 174

 If the syntax for a recursive subpattern reference (either by number or
 by name) is used outside the parentheses to which it refers, it oper-
 ates like a subroutine in a programming language. The "called" subpat-
 tern may be defined before or after the reference. A numbered reference
 can be absolute or relative, as in these examples:

 (...(absolute)...)...(?2)...
 (...(relative)...)...(?-1)...
 (...(?+1)...(relative)...

 An earlier example pointed out that the pattern

 (sens|respons)e and \1ibility

 matches "sense and sensibility" and "response and responsibility", but
 not "sense and responsibility". If instead the pattern

 (sens|respons)e and (?1)ibility

 is used, it does match "sense and responsibility" as well as the other
 two strings. Another example is given in the discussion of DEFINE
 above.

 Like recursive subpatterns, a subroutine call is always treated as an
 atomic group. That is, once it has matched some of the subject string,
 it is never re-entered, even if it contains untried alternatives and
 there is a subsequent matching failure. Any capturing parentheses that
 are set during the subroutine call revert to their previous values
 afterwards.

 When a subpattern is used as a subroutine, processing options such as
 case-independence are fixed when the subpattern is defined. They cannot
 be changed for different calls. For example, consider this pattern:

 (abc)(?i:(?-1))

 It matches "abcabc". It does not match "abcABC" because the change of
 processing option does not affect the called subpattern.

ONIGURUMA SUBROUTINE SYNTAX

 For compatibility with Oniguruma, the non-Perl syntax \g followed by a
 name or a number enclosed either in angle brackets or single quotes, is
 an alternative syntax for referencing a subpattern as a subroutine,
 possibly recursively. Here are two of the examples used above, rewrit-
 ten using this syntax:

 (?<pn> \(((?>[^()]+) | \g<pn>)* \))
 (sens|respons)e and \g'1'ibility

 PCRE supports an extension to Oniguruma: if a number is preceded by a
 plus or a minus sign it is taken as a relative reference. For example:

 (abc)(?i:\g<-1>)

 Note that \g{...} (Perl syntax) and \g<...> (Oniguruma syntax) are not
 synonymous. The former is a back reference; the latter is a subroutine
 call.

 Appendices: PCRE Specifications 175

CALLOUTS

 Perl has a feature whereby using the sequence (?{...}) causes arbitrary
 Perl code to be obeyed in the middle of matching a regular expression.
 This makes it possible, amongst other things, to extract different sub-
 strings that match the same pair of parentheses when there is a repeti-
 tion.

 PCRE provides a similar feature, but of course it cannot obey arbitrary
 Perl code. The feature is called "callout". The caller of PCRE provides
 an external function by putting its entry point in the global variable
 pcre_callout. By default, this variable contains NULL, which disables
 all calling out.

 Within a regular expression, (?C) indicates the points at which the
 external function is to be called. If you want to identify different
 callout points, you can put a number less than 256 after the letter C.
 The default value is zero. For example, this pattern has two callout
 points:

 (?C1)abc(?C2)def

 If the PCRE_AUTO_CALLOUT flag is passed to pcre_compile(), callouts are
 automatically installed before each item in the pattern. They are all
 numbered 255.

 During matching, when PCRE reaches a callout point (and pcre_callout is
 set), the external function is called. It is provided with the number
 of the callout, the position in the pattern, and, optionally, one item
 of data originally supplied by the caller of pcre_exec(). The callout
 function may cause matching to proceed, to backtrack, or to fail alto-
 gether. A complete description of the interface to the callout function
 is given in the pcrecallout documentation.

BACKTRACKING CONTROL

 Perl 5.10 introduced a number of "Special Backtracking Control Verbs",
 which are described in the Perl documentation as "experimental and sub-
 ject to change or removal in a future version of Perl". It goes on to
 say: "Their usage in production code should be noted to avoid problems
 during upgrades." The same remarks apply to the PCRE features described
 in this section.

 Since these verbs are specifically related to backtracking, most of
 them can be used only when the pattern is to be matched using
 pcre_exec(), which uses a backtracking algorithm. With the exception of
 (*FAIL), which behaves like a failing negative assertion, they cause an
 error if encountered by pcre_dfa_exec().

 If any of these verbs are used in an assertion or subroutine subpattern
 (including recursive subpatterns), their effect is confined to that
 subpattern; it does not extend to the surrounding pattern. Note that
 such subpatterns are processed as anchored at the point where they are
 tested.

 The new verbs make use of what was previously invalid syntax: an open-
 ing parenthesis followed by an asterisk. In Perl, they are generally of
 the form (*VERB:ARG) but PCRE does not support the use of arguments, so

 Dyalog APL/W Version 13.0 Release Notes 176

 its general form is just (*VERB). Any number of these verbs may occur
 in a pattern. There are two kinds:

 Verbs that act immediately

 The following verbs act as soon as they are encountered:

 (*ACCEPT)

 This verb causes the match to end successfully, skipping the remainder
 of the pattern. When inside a recursion, only the innermost pattern is
 ended immediately. If (*ACCEPT) is inside capturing parentheses, the
 data so far is captured. (This feature was added to PCRE at release
 8.00.) For example:

 A((?:A|B(*ACCEPT)|C)D)

 This matches "AB", "AAD", or "ACD"; when it matches "AB", "B" is cap-
 tured by the outer parentheses.

 (*FAIL) or (*F)

 This verb causes the match to fail, forcing backtracking to occur. It
 is equivalent to (?!) but easier to read. The Perl documentation notes
 that it is probably useful only when combined with (?{}) or (??{}).
 Those are, of course, Perl features that are not present in PCRE. The
 nearest equivalent is the callout feature, as for example in this pat-
 tern:

 a+(?C)(*FAIL)

 A match with the string "aaaa" always fails, but the callout is taken
 before each backtrack happens (in this example, 10 times).

 Verbs that act after backtracking

 The following verbs do nothing when they are encountered. Matching con-
 tinues with what follows, but if there is no subsequent match, a fail-
 ure is forced. The verbs differ in exactly what kind of failure
 occurs.

 (*COMMIT)

 This verb causes the whole match to fail outright if the rest of the
 pattern does not match. Even if the pattern is unanchored, no further
 attempts to find a match by advancing the starting point take place.
 Once (*COMMIT) has been passed, pcre_exec() is committed to finding a
 match at the current starting point, or not at all. For example:

 a+(*COMMIT)b

 This matches "xxaab" but not "aacaab". It can be thought of as a kind
 of dynamic anchor, or "I've started, so I must finish."

 (*PRUNE)

 This verb causes the match to fail at the current position if the rest
 of the pattern does not match. If the pattern is unanchored, the normal
 "bumpalong" advance to the next starting character then happens. Back-
 tracking can occur as usual to the left of (*PRUNE), or when matching

 Appendices: PCRE Specifications 177

 to the right of (*PRUNE), but if there is no match to the right, back-
 tracking cannot cross (*PRUNE). In simple cases, the use of (*PRUNE)
 is just an alternative to an atomic group or possessive quantifier, but
 there are some uses of (*PRUNE) that cannot be expressed in any other
 way.

 (*SKIP)

 This verb is like (*PRUNE), except that if the pattern is unanchored,
 the "bumpalong" advance is not to the next character, but to the posi-
 tion in the subject where (*SKIP) was encountered. (*SKIP) signifies
 that whatever text was matched leading up to it cannot be part of a
 successful match. Consider:

 a+(*SKIP)b

 If the subject is "aaaac...", after the first match attempt fails
 (starting at the first character in the string), the starting point
 skips on to start the next attempt at "c". Note that a possessive quan-
 tifer does not have the same effect as this example; although it would
 suppress backtracking during the first match attempt, the second
 attempt would start at the second character instead of skipping on to
 "c".

 (*THEN)

 This verb causes a skip to the next alternation if the rest of the pat-
 tern does not match. That is, it cancels pending backtracking, but only
 within the current alternation. Its name comes from the observation
 that it can be used for a pattern-based if-then-else block:

 (COND1 (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ) ...

 If the COND1 pattern matches, FOO is tried (and possibly further items
 after the end of the group if FOO succeeds); on failure the matcher
 skips to the second alternative and tries COND2, without backtracking
 into COND1. If (*THEN) is used outside of any alternation, it acts
 exactly like (*PRUNE).

AUTHOR

 Philip Hazel
 University Computing Service
 Cambridge CB2 3QH, England.

REVISION

 Last updated: 11 January 2010
 Copyright (c) 1997-2010 University of Cambridge.

 Dyalog APL/W Version 13.0 Release Notes 178

Appendix B – Search Pattern syntax summary
PCRESYNTAX(3) PCRESYNTAX(3)

NAME
 PCRE - Perl-compatible regular expressions

PCRE REGULAR EXPRESSION SYNTAX SUMMARY

 The full syntax and semantics of the regular expressions that are sup-
 ported by PCRE are described in the pcrepattern documentation. This
 document contains just a quick-reference summary of the syntax.

QUOTING

 \x where x is non-alphanumeric is a literal x
 \Q...\E treat enclosed characters as literal

CHARACTERS

 \a alarm, that is, the BEL character (hex 07)
 \cx "control-x", where x is any character
 \e escape (hex 1B)
 \f formfeed (hex 0C)
 \n newline (hex 0A)
 \r carriage return (hex 0D)
 \t tab (hex 09)
 \ddd character with octal code ddd, or backreference
 \xhh character with hex code hh
 \x{hhh..} character with hex code hhh..

CHARACTER TYPES

 . any character except newline;
 in dotall mode, any character whatsoever
 \C one byte, even in UTF-8 mode (best avoided)
 \d a decimal digit
 \D a character that is not a decimal digit
 \h a horizontal whitespace character
 \H a character that is not a horizontal whitespace character
 \p{xx} a character with the xx property
 \P{xx} a character without the xx property
 \R a newline sequence
 \s a whitespace character
 \S a character that is not a whitespace character
 \v a vertical whitespace character
 \V a character that is not a vertical whitespace character
 \w a "word" character
 \W a "non-word" character
 \X an extended Unicode sequence

 In PCRE, \d, \D, \s, \S, \w, and \W recognize only ASCII characters.

 Appendices: PCRE Specifications 179

GENERAL CATEGORY PROPERTY CODES FOR \p and \P

 C Other
 Cc Control
 Cf Format
 Cn Unassigned
 Co Private use
 Cs Surrogate

 L Letter
 Ll Lower case letter
 Lm Modifier letter
 Lo Other letter
 Lt Title case letter
 Lu Upper case letter
 L& Ll, Lu, or Lt

 M Mark
 Mc Spacing mark
 Me Enclosing mark
 Mn Non-spacing mark

 N Number
 Nd Decimal number
 Nl Letter number
 No Other number

 P Punctuation
 Pc Connector punctuation
 Pd Dash punctuation
 Pe Close punctuation
 Pf Final punctuation
 Pi Initial punctuation
 Po Other punctuation
 Ps Open punctuation

 S Symbol
 Sc Currency symbol
 Sk Modifier symbol
 Sm Mathematical symbol
 So Other symbol

 Z Separator
 Zl Line separator
 Zp Paragraph separator
 Zs Space separator

SCRIPT NAMES FOR \p AND \P

 Arabic, Armenian, Balinese, Bengali, Bopomofo, Braille, Buginese,
 Buhid, Canadian_Aboriginal, Carian, Cham, Cherokee, Common, Coptic, Cu-
 neiform, Cypriot, Cyrillic, Deseret, Devanagari, Ethiopic, Georgian,
 Glagolitic, Gothic, Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo,
 Hebrew, Hiragana, Inherited, Kannada, Katakana, Kayah_Li, Kharoshthi,
 Khmer, Lao, Latin, Lepcha, Limbu, Linear_B, Lycian, Lydian, Malayalam,
 Mongolian, Myanmar, New_Tai_Lue, Nko, Ogham, Old_Italic, Old_Persian,
 Ol_Chiki, Oriya, Osmanya, Phags_Pa, Phoenician, Rejang, Runic, Saurash-

 Dyalog APL/W Version 13.0 Release Notes 180

 tra, Shavian, Sinhala, Sudanese, Syloti_Nagri, Syriac, Tagalog, Tag-
 banwa, Tai_Le, Tamil, Telugu, Thaana, Thai, Tibetan, Tifinagh,
 Ugaritic, Vai, Yi.

CHARACTER CLASSES

 [...] positive character class
 [^...] negative character class
 [x-y] range (can be used for hex characters)
 [[:xxx:]] positive POSIX named set
 [[:^xxx:]] negative POSIX named set

 alnum alphanumeric
 alpha alphabetic
 ascii 0-127
 blank space or tab
 cntrl control character
 digit decimal digit
 graph printing, excluding space
 lower lower case letter
 print printing, including space
 punct printing, excluding alphanumeric
 space whitespace
 upper upper case letter
 word same as \w
 xdigit hexadecimal digit

 In PCRE, POSIX character set names recognize only ASCII characters. You
 can use \Q...\E inside a character class.

QUANTIFIERS

 ? 0 or 1, greedy
 ?+ 0 or 1, possessive
 ?? 0 or 1, lazy
 * 0 or more, greedy
 *+ 0 or more, possessive
 *? 0 or more, lazy
 + 1 or more, greedy
 ++ 1 or more, possessive
 +? 1 or more, lazy
 {n} exactly n
 {n,m} at least n, no more than m, greedy
 {n,m}+ at least n, no more than m, possessive
 {n,m}? at least n, no more than m, lazy
 {n,} n or more, greedy
 {n,}+ n or more, possessive
 {n,}? n or more, lazy

ANCHORS AND SIMPLE ASSERTIONS

 \b word boundary (only ASCII letters recognized)
 \B not a word boundary
 ^ start of subject
 also after internal newline in multiline mode
 \A start of subject
 $ end of subject

 Appendices: PCRE Specifications 181

 also before newline at end of subject
 also before internal newline in multiline mode
 \Z end of subject
 also before newline at end of subject
 \z end of subject
 \G first matching position in subject

MATCH POINT RESET

 \K reset start of match

ALTERNATION

 expr|expr|expr...

CAPTURING

 (...) capturing group
 (?<name>...) named capturing group (Perl)
 (?'name'...) named capturing group (Perl)
 (?P<name>...) named capturing group (Python)
 (?:...) non-capturing group
 (?|...) non-capturing group; reset group numbers for
 capturing groups in each alternative

ATOMIC GROUPS

 (?>...) atomic, non-capturing group

COMMENT

 (?#....) comment (not nestable)

OPTION SETTING

 (?i) caseless
 (?J) allow duplicate names
 (?m) multiline
 (?s) single line (dotall)
 (?U) default ungreedy (lazy)
 (?x) extended (ignore white space)
 (?-...) unset option(s)

 The following is recognized only at the start of a pattern or after one
 of the newline-setting options with similar syntax:

 (*UTF8) set UTF-8 mode

LOOKAHEAD AND LOOKBEHIND ASSERTIONS

 (?=...) positive look ahead
 (?!...) negative look ahead
 (?<=...) positive look behind

 Dyalog APL/W Version 13.0 Release Notes 182

 (?<!...) negative look behind

 Each top-level branch of a look behind must be of a fixed length.

BACKREFERENCES

 \n reference by number (can be ambiguous)
 \gn reference by number
 \g{n} reference by number
 \g{-n} relative reference by number
 \k<name> reference by name (Perl)
 \k'name' reference by name (Perl)
 \g{name} reference by name (Perl)
 \k{name} reference by name (.NET)
 (?P=name) reference by name (Python)

SUBROUTINE REFERENCES (POSSIBLY RECURSIVE)

 (?R) recurse whole pattern
 (?n) call subpattern by absolute number
 (?+n) call subpattern by relative number
 (?-n) call subpattern by relative number
 (?&name) call subpattern by name (Perl)
 (?P>name) call subpattern by name (Python)
 \g<name> call subpattern by name (Oniguruma)
 \g'name' call subpattern by name (Oniguruma)
 \g<n> call subpattern by absolute number (Oniguruma)
 \g'n' call subpattern by absolute number (Oniguruma)
 \g<+n> call subpattern by relative number (PCRE extension)
 \g'+n' call subpattern by relative number (PCRE extension)
 \g<-n> call subpattern by relative number (PCRE extension)
 \g'-n' call subpattern by relative number (PCRE extension)

CONDITIONAL PATTERNS

 (?(condition)yes-pattern)
 (?(condition)yes-pattern|no-pattern)

 (?(n)... absolute reference condition
 (?(+n)... relative reference condition
 (?(-n)... relative reference condition
 (?(<name>)... named reference condition (Perl)
 (?('name')... named reference condition (Perl)
 (?(name)... named reference condition (PCRE)
 (?(R)... overall recursion condition
 (?(Rn)... specific group recursion condition
 (?(R&name)... specific recursion condition
 (?(DEFINE)... define subpattern for reference
 (?(assert)... assertion condition

BACKTRACKING CONTROL

 The following act immediately they are reached:

 (*ACCEPT) force successful match
 (*FAIL) force backtrack; synonym (*F)

 Appendices: PCRE Specifications 183

 The following act only when a subsequent match failure causes a back-
 track to reach them. They all force a match failure, but they differ in
 what happens afterwards. Those that advance the start-of-match point do
 so only if the pattern is not anchored.

 (*COMMIT) overall failure, no advance of starting point
 (*PRUNE) advance to next starting character
 (*SKIP) advance start to current matching position
 (*THEN) local failure, backtrack to next alternation

NEWLINE CONVENTIONS

 These are recognized only at the very start of the pattern or after a
 (*BSR_...) or (*UTF8) option.

 (*CR) carriage return only
 (*LF) linefeed only
 (*CRLF) carriage return followed by linefeed
 (*ANYCRLF) all three of the above
 (*ANY) any Unicode newline sequence

WHAT \R MATCHES

 These are recognized only at the very start of the pattern or after a
 (*...) option that sets the newline convention or UTF-8 mode.

 (*BSR_ANYCRLF) CR, LF, or CRLF
 (*BSR_UNICODE) any Unicode newline sequence

CALLOUTS

 (?C) callout
 (?Cn) callout with data n

AUTHOR

 Philip Hazel
 University Computing Service
 Cambridge CB2 3QH, England.

REVISION

 Last updated: 11 April 2009
 Copyright (c) 1997-2009 University of Cambridge.

 Dyalog APL/W Version 13.0 Release Notes 184

Appendix C – License
Part of the functionality of ⎕R and ⎕S is implemented using the PCRE library which is redistributed
according to the following license:

PCRE LICENCE

PCRE is a library of functions to support regular expressions whose syntax
and semantics are as close as possible to those of the Perl 5 language.

Release 8 of PCRE is distributed under the terms of the "BSD" licence, as
specified below. The documentation for PCRE, supplied in the "doc"
directory, is distributed under the same terms as the software itself.

The basic library functions are written in C and are freestanding. Also
included in the distribution is a set of C++ wrapper functions.

THE BASIC LIBRARY FUNCTIONS

Written by: Philip Hazel
Email local part: ph10
Email domain: cam.ac.uk

University of Cambridge Computing Service,
Cambridge, England.

Copyright (c) 1997-2009 University of Cambridge
All rights reserved.

THE C++ WRAPPER FUNCTIONS

Contributed by: Google Inc.

Copyright (c) 2007-2008, Google Inc.
All rights reserved.

THE "BSD" LICENCE

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 * Neither the name of the University of Cambridge nor the name of Google

 Appendices: PCRE Specifications 185

 Inc. nor the names of their contributors may be used to endorse or
 promote products derived from this software without specific prior
 written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

 Dyalog APL/W Version 13.0 Release Notes 186

 187

Index
A

absolute value See magnitude
add arithmetic function 58
and boolean function 59
APL_COMPLEX_AS_V12 parameter 23
APL_EXTERN_DECF parameter 22
APL_FAST_FCHK parameter 22
APL_FCREATE_PROPS_C parameter 22
APL_FCREATE_PROPS_J parameter 22
APLFormatBias parameter 11

B

best fit approximation 79
beta function .. 60
binary integer decimal 28
binomial function ... 60
Boolean functions

and (conjunction) 59
byte order mark .. 37

C

ceiling function .. 60
change user .. 10, 98
circular function ... 23
circular functions ... 61
classic edition................................... 45, 88, 133
Classic Edition ... 123
Compatibility ... 4
complex numbers See Chapter 3

circular functions 32, 61
floating-point representation 27, 106

component files .. 22, 24
compatibility .. 4

conjugate .. 9
conjunction .. See and
creating component files 103

D

data representation
monadic ... 102

decimal comparison tolerance 9, 27, 101
default property .. 74

densely packed decimal 28
deprecated features

32-bit component files 104
direction function ... 65
divide arithmetic function 65
DOMAIN ERROR ... 49
DotAll option ... 44
drop function .. 8, 66
dyadic primitive functions

add .. 58
and .. 59
circular ... 23
divide ... 65
drop .. 8, 66
format ... 71
index function .. 8, 73
left .. 9, 76
logarithm .. 23, 77
matrix divide .. 78
power ... 23, 33, 83
residue .. 84
right .. 9, 85
subtract ... 86
take ... 8, 87

dyadic primitive operators
replace .. 35, 88
search ... 35, 88
variant 10, 35, 43, 88, 133

Dyalog Unicode IME 1, 15
dynamic link libraries 107

E

Enc option .. 48
EOL option .. 45
equal relational function 67
Euler identity 14, 32, 69
exponential function 69

F

factorial function .. 69
file check .. 22
file copy ... 24, 104
file create.. 24, 103

188 Index

file untie ... 22
floating-point representation . 9, 25, 26, 27, 101,

105
complex numbers 27, 106

floor function .. 70
fork new task .. 10, 97
format function

dyadic ... 11, 71
monadic .. 11

format system function 11

G

gamma function .. 69
grade down function 14
grade up function .. 14
Greedy option ... 46

I
i-beam ... 91

change user ... 10, 98
fork new task .. 10, 97
read DataTable 10, 94
reap forked tasks 10, 98
signal counts 10, 101
update DataTable 10, 92

IC option... 43, 88
identity ... 9, 73
identity function ... 62
identity matrix .. 80
IME .. 15
index function ... 8, 73
index-generator function 14
InEnc option ... 47
Input Method Editor 15
Interoperability ... 4
iota See index generator

K

keyboard shortcuts.. 16

L

least squares solution 79
left .. 9, 76
logarithm function 23, 77
logical conjunction See and

logical operations............ See Boolean functions

M

magnitude function ...77
matrix product See inner product
matrix-divide function78
matrix-inverse function80
ML option ... 46, 49
Mode option 44, 49, 88
monadic primitive functions

ceiling ...60
conjugate ... 9
direction ..65
exponential ...69
factorial ...69
floor ..70
format ...11
grade down ...14
grade up ..14
identity .. 9, 62, 73
index generator ...14
magnitude ...77
matrix inverse ...80
natural logarithm ..81
negative ..81
pi times ...82
reciprocal ..84
same ..9, 85
signum ..65

multiply arithmetic function81

N

name association ...107
namespace indicator 9, 139
Naperian logarithm function81
natural logarithm function81
negate............................... See negative function
negative function ..81
NEOL option ..45

O

OM option ..47
OutEnc option ...48
overstrike introducer key20
overstrikes popup..20

 Appendices: PCRE Specifications 189

P

PCRE ... 35
pi-times function .. 82
power function 23, 33, 83
primitive operators

replace .. 35, 88
search ... 35, 88
variant .. 35, 88, 133

Principal option 43, 88, 89
profile... 9
profile application 9, 133
profile user command 137
properties

propertyget Function 75
propertyset function 75

R

read DataTable ... 10, 94
reap forked tasks 10, 98
reciprocal function ... 84
regular expressions .. 35
replace operator 35, 88

DotAll .. 44
Enc ... 48
EOL ... 45
Greedy ... 46
IC ... 43, 88
InEnc .. 47
ML ... 46, 49
Mode .. 44, 49, 88
NEOL ... 45
OutEnc ... 48

residue function ... 84
right .. 9, 85

S

same ... 9, 85

search operator ... 35, 88
DotAll .. 44
Enc ... 48
EOL .. 45
Greedy .. 46
IC ... 43, 88
InEnc .. 47
ML ... 46, 49
Mode .. 44, 49, 88
NEOL ... 45
OM ... 47
OutEnc ... 48

signal counts .. 10, 101
signum function ... 65
space indicator ... 9, 139
squad indexing ... 8, 73
subtract arithmetic function 86

T

take function .. 8, 87
TRANSLATION ERROR 45

U

Unicode Edition ... 123
update DataTable 10, 92

V

variant operator 10, 35, 43, 88, 133
verify and fix input... 23
version number .. 2

W

WansSpecialKeys parameter 16
wide character .. 114

Z

zilde .. 14

Dyalog Ltd

Minchens Court

Minchens Lane

Bramley

Hampshire

RG26 5BH

United Kingdom

www.dyalog.com

